
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

UNIT IV ALGORITHM DESIGN TECHNIQUES  

Dynamic Programming: Matrix-Chain Multiplication – Elements of Dynamic 

Programming – Longest Common Subsequence- Greedy Algorithms: – Elements of the 

Greedy Strategy- An Activity-Selection Problem - Huffman Coding. 

 
ACTIVITY SELECTION PROBLEM 

You are given n activities with their start and finish times. Select the maximum 

number of activities that can be performed by a single person, assuming that a person can 

only work on a single activity at a time.  

Examples:   

Input: start[]  =  {10, 12, 20}, finish[] =  {20, 25, 30} 

 Output: 0 2 

Explanation: A person can perform at most two activities. The  

maximum set of activities that can be executed  

is {0, 2} [ These are indexes in start[] and finish[] ] 

Input: start[]  =  {1, 3, 0, 5, 8, 5}, finish[] =  {2, 4, 6, 7, 9, 9}; 

 Output: 0 1 3 4 

Explanation: A person can perform at most four activities. The  

maximum set of activities that can be executed  

is {0, 1, 3, 4} [ These are indexes in start[] and finish[] 

Approach:  

To solve the problem follow the below idea: 

The greedy choice is to always pick the next activity whose finish time is the least 

among the remaining activities and the start time is more than or equal to the finish time of 

the previously selected activity. We can sort the activities according to their finishing time 

so that we always consider the next activity as the minimum finishing time activity 

Follow the given steps to solve the problem: 

● Sort the activities according to their finishing time  

● Select the first activity from the sorted array and print it  

● Do the following for the remaining activities in the sorted array 

● If the start time of this activity is greater than or equal to the finish time of the 

previously selected activity then select this activity and print it 

Note: In the implementation, it is assumed that the activities are already sorted according 

to their finish time, otherwise the time complexity will rise to O(N*log(N)) and Auxiliary 

Space will rise to O(N), as we have to create a 2-D array for storing the start and finish 

times together. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

Algorithm Of Greedy- Activity Selector: 

GREEDY- ACTIVITY SELECTOR (s, f) 

1. n ← length [s] 
2. A ← {1} 

3. j ← 1. 
4. for i ← 2 to n 

5. do if si ≥ fi 

6. then A ← A ∪ {i} 

7. j ← i 
8. return A 

Example: Given 10 activities along with their start and end time as 

S = (A1 A2 A3 A4 A5 A6 A7 A8 A9 A10) 

Si = (1,2,3,4,7,8,9,9,11,12) 

fi = (3,5,4,7,10,9,11,13,12,14) 

 

Compute a schedule where the greatest number of activities takes place 

Solution: The solution to the above Activity scheduling problem using a greedy strategy is 

illustrated below: 

Arranging the activities in increasing order of end time 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

 
Now, schedule A1 

Next schedule A3 as A1 and A3 are non-interfering. 

Next skip A2 as it is interfering. 

Next, schedule A4 as A1 A3 and A4 are non-interfering, then next, schedule A6 as A1 A3 A4 

and A6 are non-interfering. 

Skip A5 as it is interfering. 

Next, schedule A7 as A1 A3 A4 A6 and A7 are non-interfering. 

Next, schedule A9 as A1 A3 A4 A6 A7 and A9 are non-interfering. 

Skip A8 as it is interfering. 

Next, schedule A10 as A1 A3 A4 A6 A7 A9 and A10 are non-interfering. 

Thus the final Activity schedule is: 

 

 

 
 

 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

HUFFMAN CODING 

Huffman coding is a lossless data compression algorithm. The idea is to assign 

variable-length codes to input characters; lengths of the assigned codes are based on the 

frequencies of corresponding characters.  

The variable-length codes assigned to input characters are Prefix Codes, meaning the codes 

(bit sequences) are assigned in such a way that the code assigned to one character is not 

the prefix of code assigned to any other character. This is how Huffman Coding makes sure 

that there is no ambiguity when decoding the generated bitstream.  

Let us understand prefix codes with a counter example. Let there be four characters a, b, c 

and d, and their corresponding variable length codes be 00, 01, 0 and 1. This coding leads 

to ambiguity because code assigned to c is the prefix of codes assigned to a and b. If the 

compressed bit stream is 0001, the de-compressed output may be “cccd” or “ccb” or “acd” 

or “ab”. 

See this for applications of Huffman Coding.  

There are mainly two major parts in Huffman Coding 

Build a Huffman Tree from input characters. 

Traverse the Huffman Tree and assign codes to characters. 

Algorithm: 

The method which is used to construct optimal prefix code is called Huffman 

coding. 

 This algorithm builds a tree in bottom up manner. We can denote this tree by T 

Let, |c| be number of leaves 

|c| -1 are number of operations required to merge the nodes. Q be the priority queue 

which can be used while constructing binary heap. 

Steps to build Huffman Tree 

 Input is an array of unique characters along with their frequency of occurrences and 

output is Huffman Tree.  

1. Create a leaf node for each unique character and build a min heap of all leaf 

nodes (Min Heap is used as a priority queue. The value of the frequency field 

is used to compare two nodes in the min heap. Initially, the least frequent 

character is at root) 

2. Extract two nodes with the minimum frequency from the min heap. 

3. Create a new internal node with a frequency equal to the sum of the two 

nodes frequencies. Make the first extracted node as its left child and the other 

extracted node as its right child. Add this node to the min heap. 

4. Repeat steps#2 and #3 until the heap contains only one node. The remaining 

node is the root node and the tree is complete. 

http://en.wikipedia.org/wiki/Prefix_code
http://en.wikipedia.org/wiki/Huffman_coding#Applications


ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

 

Example: 

 

character   Frequency 

    a            5 

    b           9 

    c           12 

    d           13 

    e           16 

    f           45 

Step 1. Build a min heap that contains 6 nodes where each node represents the root of a 

tree with a single node. 

Step 2 Extract two minimum frequency nodes from the min heap. Add a new internal node 

with frequency 5 + 9 = 14.  

  

 
Illustration of step 2 

Now min heap contains 5 nodes where 4 nodes are roots of trees with single element each, 

and one heap node is root of tree with 3 elements 

character           Frequency 

       c               12 

       d               13 

 Internal Node         14 

       e               16 

       f                45 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

Step 3: Extract two minimum frequency nodes from heap. Add a new internal node with 

frequency 12 + 13 = 25 

  

 
Illustration of step 3 

Now min heap contains 4 nodes where 2 nodes are roots of trees with single element each, 

and two heap nodes are root of tree with more than one nodes 

character           Frequency 

Internal Node          14 

       e               16 

Internal Node          25 

       f               45 

Step 4: Extract two minimum frequency nodes. Add a new internal node with frequency 

14 + 16 = 30 

  

 
Illustration of step 4 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

Now min heap contains 3 nodes. 

character          Frequency 

Internal Node         25 

Internal Node         30 

      f               45 

Step 5: Extract two minimum frequency nodes. Add a new internal node with frequency 

25 + 30 = 55 

  

 
Illustration of step 5 

Now min heap contains 2 nodes. 

character     Frequency 

       f         45 

Internal Node    55 

Step 6: Extract two minimum frequency nodes. Add a new internal node with frequency 

45 + 55 = 100 

  



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

 
Illustration of step 6 

Now min heap contains only one node. 

character      Frequency 

Internal Node    100 

Since the heap contains only one node, the algorithm stops here. 

Steps to print codes from Huffman Tree: 

Traverse the tree formed starting from the root. Maintain an auxiliary array. While moving 

to the left child, write 0 to the array. While moving to the right child, write 1 to the array. 

Print the array when a leaf node is encountered. 

  

 
Steps to print code from HuffmanTree 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS 

The codes are as follows: 

character   code-word 

    f          0 

    c          100 

    d          101 

    a          1100 

    b          1101 

    e          111 

 

 

 

 


