BINOMIAL DISTRIBUTION

Let us consider "n" independent trails. If the successes (S) and failures (F) are recorded successively as the trials are repeated we get a result of the type

Let "x" be the number of success and hence we have (n - x) number of failures.

$$P(S S F F S ... F S) = P(S) P(S) P(F) P(F) P(S) ... P(F) P(S)$$

$$= p p q q p ... q p$$

$$= p p ... p \times q q q ... q$$

$$= x \text{ factor} \times (n - x) \text{ factors}$$

$$= p^x \cdot q^{n-x}$$

But "x" success in "n" trials can occur in nC_x ways.

Therefore the probability of "x" successes in "n" trials is given by

$$P(X = x \ successes) = nC_x p^x q^{n-x}, x = 0, 1, 2, ..., n$$

Where p + q = 1

Assumptions in Binomial Distribution:

(i) There are only two possible outcomes for each trial (success or failure)

- (ii) The probability of a success is the same for each trail.
- (iii) There are "n" trials where "n" is constant.
- (iv) The "n" trails are independent.

Mean and variance of a Binomial Distribution:

- (i) $Mean(\mu) = np$
- (ii) Variance(σ^2) = npq

The variance of a Binomial Variable is always less than its mean.

 $\therefore npq < np$.

Find the moment generating function of binomial distribution and hence find the mean and variance.

Sol: Binomial distribution is $p(x) = nC_x p^x q^{n-x}$, x = 0,1,2,...,n

To find Mean and Variance:

$$M_X(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} P(x)$$

$$= \sum_{x=0}^n e^{tx} n C_x p^x q^{n-x}$$

$$= \sum_{x=0}^n n C_x (pe^t)^x q^{n-x} \qquad \because \sum_{x=0}^n n C_x a^x b^{n-x} = (a+b)^n$$

$$M_X(t) = (pe^t + q)^n$$

Mean
$$E(X) = \left[\frac{d}{dt}[M_*(t)]\right]_{t=0} = \left[\frac{d}{dt}[(pe^t + q)^n]\right]_{t=0}$$

$$= [n(pe^t + q)^{n-1}(pe^t + 0)]_{t=0}$$

$$= np[p+q]^{n-1}$$

$$E(X) = np$$

$$E(X^{2}) = \left[\frac{d^{2}}{dt^{2}}[M_{X}(t)]\right]_{t=0}$$

$$= \left[\frac{d}{dt}[n(pe^{t} + q)^{n-1}(pe^{t})]\right]_{t=0} = np\left[\frac{d}{dt}[(pe^{t} + q)^{(n-1)}e^{t}]\right]_{t=0}$$

$$= np[(pe^{t} + q)^{n-1}e^{t} + e^{t}(n-1)(pe^{t} + q)^{n-2}pe^{t}]_{t=0}$$

$$= np[(p+q)^{n-1} + (n-1)(p+q)^{n-2}p]$$

$$= np[1 + (n-1)p] = np[1 + np - p]$$

$$= np[1 - p + np] = np[q + np] = npq + n^{2}p^{2}$$

$$E(X^{2}) = (np)^{2} + npq$$

Variance =
$$E(X^2) - [E(X)]^2$$

= $(np)^2 + npq - (np)^2 = n^2p^2 - n^2p^2 + npq$

Variance= npq

Problems based on Binomial Distribution:

$$Mean = np$$

1. Criticize the following statements "The mean of a binomial distribution is 5 and the standard deviation is 3"

Solution:

Given mean =
$$np = 5$$
 ...(1)

Standard deviation = $\sqrt{npq} = 3$

$$\Rightarrow$$
 Variance = npq = 9 ...(2)

$$\frac{(2)}{(1)} \Rightarrow \frac{npq}{np} = \frac{9}{5} = 1.8 > 1$$

Which is impossible. Hence, the given statement is wrong.

2. If $M_X(t) = \frac{(2e^t+1)^4}{81}$, then find Mean and Variance.

Solution:

Given
$$M_X(t) = \frac{(2e^t + 1)^4}{81}$$

$$\Rightarrow M_X(t) = \left(\frac{2}{3}e^t + \frac{1}{3}\right)^4$$

Comparing with MGF of Binomial Distribution, $M_X(t) = (pe^t + q)^n$, we get

$$p = \frac{2}{3}$$
 and $= \frac{1}{3}$, $n = 4$

(i) Mean =
$$np = 4 \times \frac{2}{3} = \frac{8}{3}$$

(ii) Variance =
$$npq = \frac{8}{3} \times \frac{1}{3} = \frac{8}{9}$$

3. Six dice are thrown 729 times. How many times do you expect atleast 3 dice to show a five or six.

Solution:

Given n = 6 and N = 729

Probability of getting (5 or 6) $p = \frac{2}{6} = \frac{1}{3}$

and
$$q = 1 - \frac{1}{3} = \frac{2}{3}$$

$$P(X = x) = nC_x p^x q^{n-x}, x = 0, 1, 2, ..., n$$

$$=6C_x\left(\frac{1}{3}\right)^x\left(\frac{2}{3}\right)^{6-x}$$
, $x=0,1,2,...,6$

P(atleast 3 dice to show a five or six) = $P(X \ge 3) = 1 - P(X < 3)$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - \left[6C_0 \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^{6-0} + 6C_1 \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^{6-1} + 6C_2 \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^{6-2}\right]$$

$$= 1 - [0.0877 + 0.2634 + 0.3292]$$

$$= 1 - 0.6803$$

$$= 0.3197$$

Number of times expecting at least 3 dice to show 5 or $6 = 729 \times 0.3197$

$$= 233 \text{ times}$$

4. A machine manufacturing screw is known to produce 5% defective. In a random sample of 15 screws, what is the probability that there are (i) exactly 3 defectives (ii) not more than 3 defectives.

Solution:

Given
$$n = 15$$

$$p = 5\% = 0.05$$

$$q = 1 - p = 1 - 0.05 = 0.95$$

$$P(X = x) = nC_x p^x q^{n-x}, x = 0, 1, 2, ..., n$$
$$= 15C_x (0.05)^x (0.95)^{15-x}, x = 0, 1, 2, ..., 15$$

(i) P(exactly 3 defectives) =
$$P(X = 3)$$

= $15C_3(0.05)^3(0.95)^{15-3}$
= $0.056(0.95)^{12}$
= 0.0307

(ii) P(no More than 3 defectives) = $P(X \le 3)$

$$= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

$$= 15C_0(0.05)^0(0.95)^{15-0} + 15C_1(0.05)^1(0.95)^{15-1}$$

$$+ 15C_3(0.05)^2(0.95)^{15-2}$$

$$+ 15C_3(0.05)^3(0.95)^{15-3}$$

$$= 15C_0(0.05)^0(0.95)^{15} + 15C_1(0.05)^1(0.95)^{14} + 15C_3(0.05)^2(0.95)^{13}$$

$$+ 15C_3(0.05)^3(0.95)^{12}$$

$$= 0.4633 + 0.3658 + 0.1348 + 0.0307$$

$$= 0.9946$$

Poisson Distribution

Poisson Distribution is a limiting case of Binomial Distribution under the following assumptions.

- (i) The number of trails "n" should be independently large. i.e., $n \to \infty$
- (ii) The probability of successes "p" for each trail is indefinitely small.
- (iii) $np = \lambda$ should be finite where λ is a constant.

Application of Poisson Distribution:

Determining the number of calls received per minute at a call Centre or the number of unbaked cookies in a batch at a bakery, and much more.

Find the MGF for Poisson distribution and hence find the mean and variance.

Sol: Poisson distribution is $p(x) = \frac{e^{-\lambda} \lambda^x}{x!} x = 0,1,2,...$

$$M_X(t) = E[e^{tx}]$$

$$= \sum_{x=0}^{\infty} e^{tx} p(x)$$

$$= \sum_{x=0}^{\infty} e^{-x} e^{-\lambda} \frac{\lambda^x}{x!} = \sum_{x=0}^{\infty} \frac{(e^t)}{0}$$

$$= e^{-\lambda} \left[1 + \frac{\lambda e^t}{1!} + \frac{(\lambda e^t)^2}{2!} + \frac{(\lambda e^t)^3}{3!} + \cdots \right]$$

$$= e^{-\lambda} e^{\lambda e^t} = e^{-\lambda + \lambda e^t} : 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots = e^x$$

$$M_X(t) = e^{\lambda(e^t - 1)}$$

To find the mean and variance:

Mean
$$E(X) = \left[\frac{d}{dt}[M_X(t)]\right]_{t=0}$$

$$= \left[\frac{d}{dt}[e^{\lambda(e^t-1)}]\right]_{t=0} = \left[e^{\lambda(e^t-1)}\lambda(e^t)\right]_{t=0} = e^{\lambda(e^0-1)}\lambda e^0 = e^0\lambda$$

Mean =
$$\lambda$$

$$E(X^{2}) = \left[\frac{d^{2}}{dt^{2}}[M_{X}(t)]\right]_{t=0} = \left[\frac{d^{2}}{dt^{2}}[e^{\lambda(e^{t}-1)}]\right]_{t=0} = \left[\frac{d}{dt}[e^{\lambda(e^{t}-1)}\lambda e^{t}]\right]_{t=0}$$

$$= \lambda \left[\frac{d}{dt}[e^{\lambda(e^{t}-1)+t}]\right]_{t=0}$$

$$= \lambda [e^{\lambda(e^{t}-1)+t}(\lambda e^{t}+1)]_{t=0}$$

$$= \lambda [e^{0}(\lambda+1)]$$

$$= \lambda(\lambda+1)$$

$$E(X^{2}) = \lambda^{2} + \lambda$$

$$Variance = E(X^{2}) - [E(X)]^{2}$$

$$= \lambda^{2} + \lambda - \lambda^{2}$$

$$Variance = \lambda$$

$$Variance = \lambda$$

Problems based on Poisson Distribution:

1. Write down the probability mass function of the Poisson distribution which is approximately equivalent to $B(100,\,0.02)$

Solution:

Given n = 1000, p = 0.02

$$\lambda = np = 100 \times 0.02 = 2$$

The probability mass function of the Poisson distribution

$$P(x) = \frac{e^{-\lambda}\lambda^x}{x!}; x = 0, 1, 2, \dots, \infty$$

$$=\frac{e^{-2}2^x}{x!}; x=0,1,2,\ldots,\infty$$

2. One percent of jobs arriving at a computer system need to wait until weekends for scheduling, owing to core – size limitations. Find the probability that among a sample of 200 jobs there are no jobs hat have to wait until weekends.

Solution:

Given n = 200, p = 0.01

$$\lambda = np = 200 \times 0.01 = 2$$

The Poisson distribution is

$$P(x) = \frac{e^{-\lambda}\lambda^x}{x!}; x = 0, 1, 2, \dots, \infty$$

P(no jobs to wait until weekends) = P(X = 0)

$$P(X = 0) = \frac{e^{-2}2^0}{0!} = e^{-2} = 0.1353$$

3. The proofs of a 500 pages book containing 500 misprints. Find the probability that there are atleast 4 misprints in a randomly chosen page.

Solution:

Given
$$n = 500$$

 $p = P(\text{ getting a misprint in a given page}) = \frac{1}{500}$

$$\lambda = np = 500 \times \frac{1}{500} = 1$$

The Poisson distribution is

$$P(x) = \frac{e^{-\lambda}\lambda^x}{x!}; x = 0, 1, 2, \dots, \infty$$

$$P(X \ge 4) = 1 - P(X < 4)$$

$$= 1 - [P(X = 0) + P(X = 1)] + P(X = 2) + P(X = 3)$$

$$=1-\left[\frac{e^{-1}1^{0}}{0!}+\frac{e^{-1}1^{1}}{1!}+\frac{e^{-1}1^{2}}{2!}+\frac{e^{-1}1^{3}}{3!}\right]$$

$$= 1 - e^{-1} \left[1 + 1 + \frac{1}{2} + \frac{1}{6} \right]$$

$$= 1 - 0.3679[2.666]$$

$$= 1 - 0.9809$$

$$= 0.0192$$