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HAMMING CODES: 
 

The linearity property of the code word is that the sum of two code words is also a code 

word. Hamming codes are the type of linear error correcting codes, which can detect 

up to two bit errors or they can correct one bit errors without the detection of 

uncorrected errors. 

While using the hamming codes, extra parity bits are used to identify a single bit error. 

To get from one-bit pattern to the other, few bits are to be changed in the data. Such 

number of bits can be termed as Hamming distance. If the parity has a distance of 2, 

one-bit flip can be detected. But this can't be corrected. Also, any two bit flips cannot 

be detected. 

However, Hamming code is a better procedure than the previously discussed ones in 

error detection and correction. 

Hamming Weight: The Hamming weight of this code scheme is the largest number of 

1‟s ina valid code word. This number is 3 among the 10 code words we have chosen. 

(the ones in the while space). 

Concept of Hamming Distance: In continuous variables, we measure distance by 

Euclidean concepts such as lengths, angles and vectors. In the binary world, distances 

are measured between two binary words by something called the Hamming distance. 

The Hamming distance is the number of disagreements between two binary sequences 

of the same size. The Hamming distance between sequences 001 and 101 is = 1 The 

Hamming distance between sequences 0011001 and 1010100 is = 4. Hamming distance 

and weight are very important and useful concepts in coding. The knowledge of 

Hamming distance is used to determine the capability of a code to detect and correct 

errors. Although the Hamming weight of our chosen code set is 3, the minimum 

Hamming distance is 1. We can generalize this to say that the maximum number of 

error bits that can be detected is 
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our ability to detect errors. The number of errors that we can correct is given by 

For any positive integer m > 3, there exists a linear block code with the following 

parameters: 

code length n = 2m – 1 

number of message bits k = 2m – m – 1 

number of parity-check bits n – k = m 

Such a linear block code for which the error-correcting capability t = 1 is called a 

Hamming code.3 To be specific, consider the example of m = 3, yielding the (7, 4) 

Hamming code with n = 7 and k = 4. The generator of this code is defined by 

t = dmin –1. 
 

Where dmin is Hamming distance of the code words. 
 

For a code with dmin = 3, we can both detect 1 and 2 bit errors. So we want to have 

a code set with as large a Hamming distance as possible since this directly effects 
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The operative property embodied in this equation is that the columns of the parity-check 

matrix P consist of all the nonzero m-tuples, where m = 3. With k = 4, there are 2k = 16 

distinct message words, which are listed in Table 10.1. For ma given message word, the 

corresponding codeword is obtained by using (10.13). Thus, the application of this 

equation results in the 16 codewords listed in Table 10.1. 

In Table 10.1, we have also listed the Hamming weights of the individual codewords in 

the (7,4) Hamming code. Since the smallest of the Hamming weights for the nonzero 

codewords is 3, it follows that the minimum distance of the code is 3, which is what it 

should be by definition. Indeed, all Hamming codes have the property that the minimum 

distance dmin = 3, independent of the value assigned to the number of parity bits m. To 

illustrate the relation between the minimum distance dmin and the structure of the parity- 

check matrix H, consider the codeword 0110100. 
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An important property of binary Hamming codes is that they satisfy the condition of with 

the equality sign, assuming that t = 1. Thus, assuming single-error patterns, we may 

formulate the error patterns listed in the right-hand column of Table 10.2. The 

corresponding eight syndromes, listed in the left-hand column, are calculated in 

accordance with (10.20). The zero syndrome signifies no transmission errors. 

Suppose, for example, the code vector [1110010] is sent and the received vector is 

[1100010] with an error in the third bit. Using (10.19), the syndrome is calculated to be 
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the corresponding coset leader (i.e., error pattern with the highest probability of 

occurrence) is found to be [0010000], indicating correctly that the third bit of the 

received vector is erroneous. Thus, adding this error pattern to the received vector, in 

accordance yields the correct code vector actually sent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encoding a message by Hamming Code 

The procedure used by the sender to encode the message encompasses the following 

steps 

 Step 1 − Calculation of the number of redundant bits. 

 

 Step 2 − Positioning the redundant bits. 

 

 Step 3 − Calculating the values of each redundant bit. 

 

Once the redundant bits are embedded within the message, this is sent to the user. 

 

Step 1 − Calculation of the number of redundant bits. 
 

If the message contains m𝑚number of data bits, r𝑟number of redundant bits are 

added to it so that m𝑟 is able to indicate at least (m + r+ 1) different states. Here, 
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(m + r) indicates location of an error in each of (𝑚 + 𝑟) bit positions and one 

additional state indicates no error. Since, r𝑟 bits can indicate 2r𝑟 states, 2r𝑟 must 

be at least equal to (m + r + 1). Thus the following equation should hold 2r ≥ 

m+r+ 

Step 2 − Positioning the redundant bits. 
 

The r redundant bits placed at bit positions of powers of 2, i.e. 1, 2, 4, 8, 16 etc. 

They are referred in the rest of this text as r1 (at position 1), r2 (at position 

2), r3 (at position 4), r4 (at position 8) and so on. 

Step 3 − Calculating the values of each redundant bit. 
 

The redundant bits are parity bits. A parity bit is an extra bit that makes the 

number of 1s either even or odd. The two types of parity are − 

 Even Parity − Here the total number of bits in the message is made even. 

 

 Odd Parity − Here the total number of bits in the message is made odd. 

 

Each redundant bit, ri, is calculated as the parity, generally even parity, based 

upon its bit position. It covers all bit positions whose binary representation 

includes a 1 in the ith position except the position of ri. Thus − 

 r1 is the parity bit for all data bits in  positions whose binary representation 

includes a 1 in the least significant position excluding 1 (3, 5, 7, 9, 11 and so on) 

 r2 is the parity bit for all data bits in positions whose binary representation 

includes a 1 in the position 2 from right except 2 (3, 6, 7, 10, 11 and so on) 

 r3 is the parity bit for all data bits in positions whose binary representation 

includes a 1 in the position 3 from right except 4 (5-7, 12-15, 20-23 and so on) 
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Decoding a message in Hamming Code 
 

Once the receiver gets an incoming message, it performs recalculations to detect 

errors and correct them. The steps for recalculation are − 

 Step 1 − Calculation of the number of redundant bits. 

 

 Step 2 − Positioning the redundant bits. 

 

 Step 3 − Parity checking. 

 

 Step 4 − Error detection and correction 

 

Step 1 − Calculation of the number of redundant bits 
 

Using the same formula as in encoding, the number of redundant bits are ascertained. 

2r ≥ m + r + 1 where m is the number of data bits and r is the number of redundant bits. 

Step 2 − Positioning the redundant bits 

The r redundant bits placed at bit positions of powers of 2, i.e. 1, 2, 4, 8, 16 etc. 
 

Step 3 − Parity checking 
 

Parity bits are calculated based upon the data bits and the redundant bits using the same 

rule as during generation of c1,c2 ,c3 ,c4 etc. Thus 

c1 = parity(1, 3, 5, 7, 9, 11 and so on) 

 

c2 = parity(2, 3, 6, 7, 10, 11 and so on) 

c3 = parity(4-7, 12-15, 20-23 and so on) 

Step 4 − Error detection and correction 
 

The decimal equivalent of the parity bits binary values is calculated. If it is 0, there is no 

error. Otherwise, the decimal value gives the bit position which has error. For example, if 

c1c2c3c4 = 1001, it implies that the data bit at position 9, decimal equivalent of 1001, has 

error. The bit is flipped to get the correct message. 


