ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

AVL TREES

AVL treeis a self-balancing binary search tree invented by G.M. Adelson-Velsky and E.M. Landis in 1962.
Inan AVL tree, the heights of the two sub-trees of a node maydiffer byat mostone. Duetothis property,
the AVL treeisalso known as a height-balanced tree.

The key advantage of using an AVL tree is that it takes Oflog n) time to perform search, insert,and
delete operationsinanaverage case aswellastheworst case because the height of the tree is limited to
O(log n).

The structure of an AVL tree is the same as that of a binary search tree but with a little difference.
In its structure, it stores an additional variable called the Balance Factor.

The balance factor of a node is calculated by subtracting the height of its right sub-tree from the height
of its left sub-tree. Abinary search tree in which every node hasabalance factorof =1, 0, or 1 issaidto be
height balanced. A node with any other balance factor'is considered to be ‘unbalanced and requires

rebalancing of the tree.

Balance factor = Height (left sub-tree) — Height (right sub-tree)

If the balance factor ofa node is 1, then it means that the left sub-tree of the tree isonelevel higherthan
thatdfthe right sub-tree.Such a tree is therefore calledas a left-heavy tree.

Ifthe balance factor ofanodeis 0, then it meansthat the height of the left sub- tree (longest pathintheleft
sub-tree)isequaltothe heightoftheright sub-tree.

Ifthe balance factorofa node is—1, then it meansthat the left sub-tree of the tree isone level lowerthan

thatoftherightsub-tree.Suchatreeisthereforecalledas a right-heavy tree.

{ An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node}

is either -1, 0 or +1.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY
The treesgiven ingven Fig. are typical candidates of AVL trees because the balancing factorofevery node is
either 1, 0, or —1. However, insertions and deletions froman AVL tree may disturb the balance factorofthe

nodesand,thus, rebalancing ofthetreemay have to bedone.

=

(a) Left-heavy AVL tree (b) Right-heavy tree (c) Balanced tree

Thetreeisrebalanced by performingrotation atthecritical node.There arefour types of rotations:

(L.I. Rotation)

Left Rotation
Single Rotation <
/ Right Rotation (RR Rotation)
\ Left Right Rotation (LR Rotation)
Double Rotation <
Right Left Rotation (121

Rotation)

Rotations

OPERATIONS on AVL TREE

1. Search

2. Insert

3. Delete

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

1. Searching for a Node in an AVL Tree

Searching in an AVL tree is performed exactly the same way as it is performed in a binary search tree. Due
to the height-balancing of the tree, the search operation takes O(log n) time to complete. Since the

operation does not modify the structure of the tree, no special provisions are required.

Step 1: Read the search element from the user

Step 2: Compare, the search element with the value of root node in the tree.

Step 3: If both are matching, then display "Given node found!\!" and terminate the

function

Step 4:If botharenotmatching,then checkwhethersearchelementissmalleror larger than that

node value.

Step 5: If search element is smaller, then continue the search process in left subtree. Step 6:
If search element is larger, then continue the search process in right subtree. Step 7: Repeat
the same until we found exact element or we completed with a leaf node Step 8:Ifwereachto

thenodewithsearchvalue,thendisplay"Elementisfound" and terminate thefunction.

Step 9: If we reach to aleaf node and it is also not matching, then display "Element not found"

and terminate the function.

2. Inserting a New Node in an AVL Tree

Inan AVL tree, the insertion operation is performed with O(log n) time complexity. In AVL Tree, new node

is always inserted as a leaf node. The insertion operation is performed as follows...

Step 1:Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2: After insertion, check the Balance Factor of every node.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Step 3: If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4: If the Balance Factor of any node is other than 0 or 1 or -1 then tree is said to be

imbalanced. Then perform the suitable Rotation to make it balanced. And go for next operation.

Consider the AVL tree given in Fig. If we insert a new node with the value 30, then the new tree will still be

balanced and no rotations will be required in this case and which shows the tree after inserting node 30.

0 i
~\ ~
) g_s

’ 4 0 (4
(36 63) %6 63)

1 -1) 1 o%o
@ ® © (@) ® @

0 0 0
70) 30 70/
AVl tree AVL tree afterinserting AVLtreeanode with the value30

The four categories of rotations are:

1. LLrotationThenewnodeisinsertedintheleft sub-tree ofthe left sub-treeofthe critical node.
2. RRrotationThenewnodeisinsertedintheright sub-tree oftheright sub-treeof the critical node.
3. LRrotation The new node isinserted inthe right sub-tree ofthe left sub-tree of the critical node.

4. RLrotation The new node isinserted inthe left sub-tree ofthe right sub-tree of the critical node.

LL rotation

Left Left Case

Root [';’

v o POk

RR rotation

Right Right Case

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

LR rotation

Left Right Case
(s
A
Root
f ‘ Prvot

RL rotation

Right Left Case

Right Left Left Right
Rotation Rotation Rotation Rotation
Root /=
‘:‘5‘4 . Root
Pivot (AN _i Pivot
Right Left
Rotation Rotation

®
A £

(s)

A A

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

LL Rotation

Itisalsocalled asSingleleftrotation.ltRotates the edgeconnectingtherootand its right child in the binary tree

Example 1: Considerthe AVLtreegiveninFig. andinsert 18intoit.

Solution:

(Step 2)

RR Rotation

Itisalso called asSingle right rotation. It Rotatesthe edge connecting the root and its left child in the binary

tree

Example 2: Consider the AVL tree given in Fig. and insert 89 into it.

Solution:

0 0

(Step 1)

(Step 2)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

LR Rotation
e |t is also called as Double left-right rotation.
e Combination of tworotations
1. perform left rotation of the left sub-tree of rootr
2. performrightrotation ofthe new tree rooted at r

¢ It is performed after a new key is inserted into the right sub-tree of the left child of a tree whose

root had the balance of +1 before the insertion

RL Rotation
@ |t is also called as Double right-leftrotation
e Combination of tworotations
1. perform right rotation of the right sub-tree of root r
2. perform left rotation of the new tree rooted at r

¢ |t is performed after a new key is inserted into the left sub-tree of the right child of a tree whose root

had the balance of -1 before the insertion

Examplel ConstructanAVLtreebyinsertingthefollowingelementsinthegiven order. 63,9, 19, 27, 18, 108, 99, 81.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Solution:

After LR Rotation
(Step 1) (Step 2) (Step 3) (Step 4)
0 1 2 0
& .@ ® i
0 - 0 0
9 ON®
Cj
(Step 5) (Step 6) (Step 7)
=4 0 0

After LL Rotation

(Step 10)

1

3. Deleting a Node from an AVL Tree

Deletion of a nodein an AVL tree is similar to that of binary search trees. But, Deletion may disturbthe AVL ness
ofthetree,sotorebalancethe AVLtree, weneedto performrotations. Thereare two classes of rotations that can

be performed on an AVL tree after deleting a given node. These rotationsare Rrotationand Lrotation.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Example: Considerthe AVLtreegiveninFig.anddelete72fromit.

Solution:
1
45
0 —1
@ 62
1 -1 0
>\
27 39 @
0 0
(8) b
RO Rotation

(Step 1)

1
(27

04 —1
G{ 39

40
(Step 2)

3%
2
45)

®

0

~0

Let Bbetherootofthe left or right sub-tree of A(critical node)..ROrotation is applied if the balance factor ofBis

0.

)

(h-1)

2
(h)

1
(h)

TZ
(h)

(a)

(b)

2
(h)

(c)

Tree (a) is an AVL tree. Intree (b), the node X is to be deleted from the right sub-tree of the critical node A (node

Aisthecritical node because it is the closest ancestor whose balance factor is not -1, 0, or 1). Since the balance

factor of node B is 0, we apply RO rotation as shown in tree (c). During the process of rotation, node B becomes

the root, with T1 and A as its left and right child. T2 and T3 becomethe leftandright sub-treesof A.

R1 Rotation

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Let B be the root of the left or right sub-tree of A (critical node). R1 rotation is applied if the balance factorofBis

1.0bservethat ROandR1rotationsaresimilartoLLrotations; the only difference is that RO and R1 rotations yield

different balance factors. This is illustrated in Fig.

1
/A
:
B T3
(h)
T T,
(h) (h-1)
(a)

B
/>7~ (h-1) (h)
X

(h)

(h-1) (h-1) (h-1)

(b) (c)

Tree (a) isan AVL tree. Intree (b), the node Xis to be deleted from the right sub-tree of the critical node A(node

Aisthe criticalnode because it is the closest ancestor whose balance factor is not —1, 0, or 1). Since the balance

factor of node B is 1, we apply R1 rotation as shown intree (c). During the processofrotation, node B becomes

theroot, with T1 and A as its left and right children. T2 and T3 become the left and right sub- trees of A.

Example 1: Consider the AVL tree given in Fig. and delete 72 from it.

1

45
1 —1
36 @%
1, 0
9 @ ¢

1.@72 39)

0
(18) (step 1) (Step 2)

2
45)

[

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Example 2 Consider the AVL tree given in Fig. and delete 72 from it.

(Step 2)

Example 3 Delete nodes 52, 36, and 61 from.the AVL tree given in Fig.

(Step 1) (Step 2)

Programming Example

#include <stdio.h>

#include <stdlib.h>

// Create Node

struct Node

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

int key;

struct Node *left;

struct Node *right;

int height;

b

int max(int a, int b);

// Calculate height

if (N == NULL)
return O;
return N->height;

}

int max(int a, int b)
0 1
(‘ BSERVE oprimize oUTSPRED

return (a>b) ?‘

}

// Create a node

struct Node *newNode(int key)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

struct Node *node = (struct Node *)

malloc(sizeof(struct Node));

node->key = key;

node->left = NULL;

node->right = NULL;

node->height = 1;

return (node);

{ b
F .
! A &
struct Node *x = y->left;

struct Node *T2 = x->right;

x->right = y; ‘
y->left =T2; ‘

y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;

return x;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

}

// Left rotate

struct Node *leftRotate(struct Node *x)

{

y->left = x;

x->right = T2;

x->height = max(

{
if (N == NULL) ‘
return O;

return height(N->left) - height(N->right);

// Insert node

struct Node *insertNode(struct Node *node, int key)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

// Find the correct position to insertNode the node and insertNode it

if (node == NULL)

return (newNode(key));

if (key < node->key)

node->left = insertNode(node->left, key);

else if (key > node->key)

node->right = insertNode(node->right, key);

else

return node;

// Update the balance factor of each node and

// Balance the tree

node->height =1 + max(height(node->left),

height(node->right));

int balance = getBalance(node);

if (balance > 1 && key < node->left->key)

return rightRotate(node);

if (balance < -1 && key > node->right->key)

return leftRotate(node);

if (balance > 1 && key > node->left->key) {

node->left = leftRotate(node->left);

return rightRotate(node);

if (balance < -1 && key < node->right->key)

node->right = rightRotate(node->right);

return leftRotate(node);

return node;

struct Node *minValueNode(struct Node *node)

struct Node *current = node;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

while (current->left != NULL)

current = current->left;

return current;

// Delete a nodes

struct Node *deleteNode(struct Node *root, int key)

// Find the node and delete it

if (root == NULL)

return root;

if (key < root->key)

root->left = deleteNode(root->left, key);

else if (key > root->key)

root->right = deleteNode(root->right, key);

else

if ((root->left == NULL) | | (root->right == NULL))

struct Node *temp = root->left ? root->left : root->right;

if (temp == NULL) {

temp = root;

root = NULL;

}

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

if (root == NULL)

return root;

// Update the balance factor of each node and

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

// balance the tree

root->height = 1 + max(height(root->left), height(root->right));

int balance = getBalance(root);

if (balance > 1 && getBalance(root->left) >= 0)

return rightRotate(root);

if (balance > 1 && getBalance(root->left) < 0) {

root->left = leftRotate(root->left);

return rightRotate(root);

if (balance < -1 && getBalance(root->right) <=0)

return leftRotate(root);

if (balance < -1 && getBalance(root->right) > 0) {

root->right = rightRotate(root->right);

return leftRotate(root);

return root;

// Print the tree

void printPreOrder(struct Node *root) {

if (root != NULL) {

printf("%d ", root->key);

printPreOrder(root->left);

printPreOrder(root->right);

b}

int main() {

struct Node *root = NULL;

root = insertNode(root, 2);

root = insertNode(root, 1);

root = insertNode(root, 7);

root = insertNode(root, 4);

root = insertNode(root, 5);

root = insertNode(root, 3);

root = insertNode(root, 8);

printPreOrder(root);

root = deleteNode(root, 3);

printf("\nAfter deletion: ");

printPreOrder(root);

return 0;}

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

http://www.tcpdf.org

