
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

THREE ADDRESS CODE

 Three Address code is a sequence of statements of the general form

x := y op z

where x, y, z are names, constants, or compiler-generated temporaries; op stands for any operator, such

as a fixed-or-floating point arithmetic operator, or a logical operator on Boolean-valued data.

 In three-address code, there is at most one operator on the right side of an instruction; that is, no built-

up arithmetic expressions are permitted. Thus a source-language expression like x+y*z might be

translated into the sequence of three-address instructions

t1 := y * z

t2 := x + t1

where t1 and t2 are compiler-generated temporary names. The use of names for the intermediate values

computed by a program allows three address code to be easily rearranged unlike postfix notation.

Implementations of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler, these statements can

be implemented as records with fields for the operator and the operands. Three such representations are

 Quadruples

 Triples

 Indirect triples

Quadruples:

 A quadruple is a record structure with four fields, which we call op, argl, arg2, and result. The op field

contains an internal code for the operator.

 The three-address statement x:= y op z is represented by placing y in arg1, z in arg2 and x in result.

 Statements with unary operators like x: = – y or x: = y do not use arg2.

 Operators like param use neither arg2 nor result.

 Conditional and unconditional jumps put the target label in result.

 The quadruples for the assignment a: = b * –c + b * –c

 The contents of fields arg1, arg2, and result are normally pointers to the symbol-table entries for the

names represented by these fields. If so, temporary names must be entered into the symbol table as they

are created.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

Triples:

 To avoid entering temporary names into the symbol table. we might refer to a temporary value by the

position of the statement that computes it.

 In Triples, three-address statements can be represented by records with only three fields: op, arg1 and

arg2. The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table or pointers

into the triple structure (for temporary values).

 In practice, the information needed to interpret the different kinds of entries in the arg1 and arg2 fields

can be encoded into the op field or some additional fields.

Indirect Triples:

 Another implementation of three-address code that has been considered is that of listing pointers to

triples, rather than listing the triples themselves.

 This implementation is naturally called indirect triples. For example, let us use an array statement to list

pointers to triples in the desired order.

Quadruples Vs Triples Vs Indirect Triples:

 A benefit of quadruples over triples can be seen in an optimizing compiler, where instructions are often

moved around.

 With quadruples, if we move an instruction that computes a temporary t, then the instructions that use t

require no change.

 With triples, the result of an operation is referred to by its position, so moving an instruction may require

us to change all references to that result.

 This problem does not occur with indirect triples. Indirect triples consist of a listing of pointers to triples,

rather than a listing of triples themselves.

