4.2 Groups

Define Group

A non-empty set G together with the binary operation *,i.e., (G,*) is called a group if * satisfies the following conditions.

(i) Closure Property: $a * b = x \in G$, for all $a, b \in G$.

(ii) Associativity: (a * b) * c = a * (b * c) for all $a, b, c \in G$.

(iii) Identity: There exists an element $e \in G$ called the identity element such that

a * e = e * a = a, for all a ε G.

(iv) Inverse: There exists an element $a^{-1}\varepsilon$ G called the inverse of 'a' such that

$$a * a^{-1} = a^{-1} * a = a$$
, for all a ε G.

Define Abelian Group

In a group (G, *), if a * b = b *a, for all a, b ε G, then the group (G, *) is called an Abelian group.

Example:(Z, +) is an Abelian group.

Define an Order of a Group / E OPTIMIZE OUTSPREP

The number of elements in a group G is called the order of the group and is denoted by O(G).

It is denoted by O(G) or |G|.

Define Finite and Infinite Group

(i) If O(G) is finite, then G is said to be a finite group.

(ii) If O(G) is infinite, then G is said to be a infinite group.

Theorems on Abelian Groups

Theorem: 1

If every element of a group G has its own inverse, then G is abelian.

GINEER

(**OR**)

For any group G, if $a^2 = e$ with $a \neq e$, then G is abelian.

Proof:

Let (G, *) be a group.

For a, b ε G, we have a \ast b ϵ G

Given $a = a^{-1}$ and $b = b^{-1}$

 $(a * b) = (a * b)^{-1}$

$$= b^{-1} * a^{-1} = b * a(\because a = a^{-1} \& b = b^{-1})$$

 $\Rightarrow a * b = b * a$

 \therefore G is abelian.

AM, KANYA

Theorem: 2

Prove that a group (G, *) is abelian iff $(a * b)^2 = a^2 * b^2$ for all a, $b \in G$

Proof:

Assume that G is abelian.

 $a * b = b * a, a, b \in G \rightarrow (1)$ Let $a^2 * b^2 = (a * a) * (b * b)$ = a * [a * (b * b)] :: (* is Associative)lig = a * [(a * b) * b] :: (* is Associative)= a * [(b * a) * b] :: (By (1))= (a * b) * (a * b) : (* is Associative) $= (a * b)^2$ $\therefore (a * b)^2 = a^2 * b^2$ Conversely assume that $(a * b)^2 = a^2 * b^2$ ULAM, KANYAKUT To prove G is abelian. $\Rightarrow (a * b) * (a * b) = (a * a) * (b * b)$ READ $\Rightarrow a * [b * (a * b)] = a * [a * (b * b)]$: (* is Associative) $\Rightarrow b * (a * b) = a * (b * b)$ (Left Cancellation law)

 \Rightarrow (b * a) = (a * b)

 \Rightarrow (b * a) * b = (a * b) * b

(Right Cancellation law)

 \therefore G is abelian.

Hence the proof.

Theorem: 3

If (G, *) is an abelian group, then for all a, b ε G then $(a * b)^n = a^n * b^n$

Proof:

Let (G, *) be an abelian group and a, b ε G. Then for all n ε Z,

$$(a * b)^n = a^n * b^n$$

Case (i) Let n = 0

Then $a^0 = e$, $b^0 = e$, $(a * b)^0 = e$

$$\therefore (a*b)^0 = a^0 * b^0$$

Hence the result is true when n = 0

Case (ii) let n = 1

Let n be a positive integer

 $(a * b)^1 = a^1 * b^1$

KULAM, KANY

The result is true for n^{2} are optimize out spread

Assume that it is true for n = k, so that

$$(a * b)^k = a^k * b^k \to (1)$$

To prove it is true for n = k + 1

Now $(a * b)^{k+1} = (a * b)^k * (a * b)$

$$=a^k * b^k * a * b$$

$$= a^{k} * (b^{k} * a) * b$$

= $a^{k} * (a * b^{k}) * b$
= $(a^{k} * a) * (b * b^{k})$
= $a^{k+1} * b^{k+1}$

Hence the result is true for n = k + 1.

Hence by induction, the result is true for positive integer values of n.

Hence the proof.

Problems on Groups:

1. Show that set \mathbb{R} with the usual addition as a binary operation is an abelian group.

CANY

NEE

Solution: Let $a, b, c \in \mathbb{R}$

- (i) Closure property: Clearly $a + b \in \mathbb{R}$
- (ii) Associative property: a + (b + c) = (a + b) + c

(iii) Identity element: Since $0 \in \mathbb{R}$, we have

 $\Rightarrow a + 0 = 0 + a = a$

(iv) Additive Inverse: For $a \in \mathbb{R}$, we have $-a \in \mathbb{R}$, such that

$$a + (-a) = 0 = (-a) + a$$

 \therefore The inverse of *a* is -a.

(v) Commutative property: a + b = b + a for all $a, b \in \mathbb{R}$

 \therefore (\mathbb{R} , +) is an abelian group. NGINEER

Since \mathbb{R} contains infinite number of elements, $(\mathbb{R}, +)$ is an infinite abelian group

2. Show that $(\mathbb{R} - \{1\}, *)$ is an abelian group, where * is defined by

a * b = a + b + ab, for all $a, b \in \mathbb{R}$.

Solution:

Here $\mathbb{R} - \{1\}$ means the set or real numbers except 1

(i) Closure property:

Clearly $a * b = a + b + ab \in (\mathbb{R} - \{1\})$

 $[a \neq -1, b \neq -1]$

(ii) Associative property: SERVE OPTIMIZE OUTSPREAD

$$(a * b) * c = (a + b + ab) * c$$

$$= a+b+ab+c+(a+b+ab)c$$

 $= a + b + ab + c + ac + bc + abc \qquad \dots (A)$

ULAM, KANYP

$$a * (b * c) = a * (b + c + bc)$$

$$= a + b + c + bc + a(b + c + bc)$$

$$= a + b + c + bc + ab + ac + abc \qquad \dots (B)$$
From (A) and (B), we get
$$(a * b) * c = a * (b * c), \quad \text{for all } a, b \in (\mathbb{R} - \{1\})$$
(iii) Identity element:
Let 'e' be the identity element.
Then, $a * e = a$

$$\Rightarrow a + e + ae = a$$

$$\Rightarrow e(1 + a) = 0$$
Here '0' is the identity element and $0 \in (\mathbb{R} + \{1\})$ SPREAD
(iv) Inverse:
Let the inverse of a be a^{-1}

Then, $a * a^{-1} = 0$ (identity)

$$\Rightarrow a + a^{-1} + aa^{-1} = 0$$

$$\Rightarrow a^{-1}(1 + a) = -a$$

$$\Rightarrow a^{-1} = -\frac{a}{1+a} \in (\mathbb{R} - \{1\})$$

$$\therefore \text{ Inverse element is } -\frac{a}{1+a}$$

(v) Commutative:

$$\Rightarrow a * b = a + b + ab$$

$$= b + a + ba$$

$$= bb * a$$

$$\therefore a * b = b * a, \text{ for all } a, b \in (\mathbb{R} - \{1\})$$

3. Show that $(\mathbb{Q}^+,*)$ is an abelian group where * is defined by

$$a * b = \frac{ab}{2}, for all a, b \in \mathbb{Q}^+$$

Solution:

Let \mathbb{Q}^+ be the set of all positive rational numbers.

(i) Closure property:

Clearly
$$a * b = \frac{ab}{2} \in \mathbb{Q}^+$$

(ii) Associative property:

$$(a * b) * c = \frac{ab}{2} * c = \frac{\frac{abc}{2}}{2} = \frac{abc}{4} \dots (1)$$

$$a * (b * c) = a * \frac{bc}{2} = \frac{\frac{abc}{2}}{2} = \frac{abc}{4} \dots (2)$$
From (1) and (2) we get,

$$(a * b) * c = a * (b * c), for all a, b \in \mathbb{Q}^+$$
(iii) Identity element:
Let 'e' be the identity element.
Then, $a * e = a$

$$\Rightarrow \frac{ae}{2} = a \Rightarrow e = 2$$
Here '2' is the identity element and $2 \in \mathbb{Q}^+$ E OUTSPREAD
iv) Inverse:

Let the inverse of a be a^{-1}

Then, $a * a^{-1} = 2$ (identity)

$$\Rightarrow \frac{aa^{-1}}{2} = 2$$

$$\Rightarrow a^{-1} = \frac{4}{a}$$

EERING

- \therefore Inverse element is $\frac{4}{a} \in \mathbb{Q}^+$
- v) Commutative:

Now
$$a * b = \frac{ab}{2}$$

 $\therefore b * a = \frac{ba}{2} = \frac{ab}{2}$

2

$$\therefore a * b = b * a, \quad \text{for all } a, b \in \mathbb{Q}$$

Hence $(\mathbb{Q}^+,*)$ is an abelian group.

4. Let
$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$
 Show that G is a group

ERVE OPTIMIZE OUTSPRE

under the operation of matrix multiplication.

Solution:

Let I =
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, A = $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, B = $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, C = $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

 \therefore G = {I, A, B, C}. Since it is finite set we shall form Cayley table and verify the axioms of a Group.

I is the identity element.

$$A \cdot I = I \cdot A = A, \ B \cdot I = I \cdot B = B, \ C \cdot I = I \cdot C = C$$

$$A^{2} = A \cdot A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$AB = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = C$$

$$AC = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = B$$

$$B^{2} = B \cdot B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$C^{2} = C \cdot C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$BC = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = A$$

$$CA = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = B$$

Similarly BA = C, CB = AERVE OPTIMIZE OUTSPREAD

Cayley table:

-	Ι	А	В	С
Ι	Ι	А	В	С

А	A	Ι	С	В			
В	В	С	Ι	А			
С	С	В	A	Ι			
ENGINEERIA							

(i) Closure property:

The first line of the table contains only all the elements of G. So G is closed under matrix multiplication.

(ii) Associative property:

Since matrix multiplication is associative it is true for G also. So Associative is satisfied.

ALKULAN, KANYA

(iii) Identity element:

I is the identity element.

SERVE OPTIMIZE OUTSPREA

(iv) Inverse:

Inverse of A is A, B is B and C is C.

So (G, \cdot) is a group under matrix multiplication.

5. Check whether $H_1 = \{0, 5, 10\}$ and $H_2 = \{0, 4, 8, 12\}$ are subgroups of

 Z_{15} with respect to $+_{15}$.

Solution:

The addition tables (mod 15) for the sets H_1 and H_2 is given below:

For H_1

For H_2

		<u> </u>	LAM	MAN	FARUM
+15	0	4	8	12	
0	0'85	£4rve		12 12	OUTSPREAD
	_				
4	4	8	12	1	
8	8	12	1	5	
12	12	1	5	9	

Here all the entries in the addition table for H_1 are the elements of H_1 .

 \therefore H_1 is a subgroup of Z_{15} .

Also all the entries in the addition table for H_2 are not the elements of H_2 .

 \therefore H_2 is not closed under addition.

