4.2 Groups

Define Group

A non-empty set G together with the binary operation $*$,i.e., $(G, *)$ is called a group if $*$ satisfies the following conditions.
(i) Closure Property: $a * b=x \in G$, for all $a, b \in G$.
(ii) Associativity: $(a * b) * c=a *(b * c)$ for all $a, b, c \varepsilon G$.
(iii) Identity: There exists an element $e \varepsilon G$ called the identity element such that $a * e=e * a=a$, for all a G.
(iv) Inverse: There exists an element $a^{-1} \varepsilon$ G called the inverse of ' a ' such that $a * a^{-1}=a^{-1} * a=a$, for all a $\varepsilon \mathrm{G}$.

Define Abelian Group

In a group $(\mathrm{G}, *)$, if $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$, for all $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$, then the group $(\mathrm{G}, *)$ is called an Abelian group.

Example: $(Z,+)$ is an Abelian group.

Define an Order of a Group 0 pithriz outhereat

The number of elements in a group G is called the order of the group and is denoted by $\mathrm{O}(\mathrm{G})$.

It is denoted by $\mathrm{O}(\mathrm{G})$ or $|G|$.

Define Finite and Infinite Group

(i) If $\mathrm{O}(\mathrm{G})$ is finite, then G is said to be a finite group.
(ii) If $\mathrm{O}(\mathrm{G})$ is infinite, then G is said to be a infinite group.

Theorems on Abelian Groups

Theorem: 1

If every element of a group G has its own inverse, then G is abelian. (OR)

For any group G, if $a^{2}=e$ with $a \neq e$, then G is abelian.

Proof:

Let (G, *) be a group.
For $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$, we have $\mathrm{a} * \mathrm{~b} \in \mathrm{G}$
Given $a=a^{-1}$ and $b=b^{-1}$
$(a * b)=(a * b)^{-1}$
$=b^{-1} * a^{-1}=b * a\left(\because a=a^{-1} \& b=b^{-1}\right)$
$\Rightarrow a * b=b * a$
$\therefore G$ is abelian.
Hence the proof.

Theorem: 2

Prove that a group $(G, *)$ is abelian iff $(a * b)^{2}=a^{2} * b^{2}$ for all $a, b \in G$

Proof:

Assume that G is abelian.

$$
a * b=b * a, \mathrm{a}, \mathrm{~b} \in \mathrm{G} \rightarrow(1)
$$

Let $a^{2} * b^{2}=(a * a) *(b * b)$
$=a *[a *(b * b)] \because(*$ is Associative $)=2$
$=a *[(a * b) * b] \because(*$ is Associative $)$
$=a *[(b * a) * b] \because(B y(1))$

$$
=(a * b) *(a * b) \because(* \text { is Associative })
$$

$$
=(a * b)^{2}
$$

$$
\therefore(a * b)^{2}=a^{2} * b^{2}
$$

Conversely assume that $(a * b)^{2}=a^{2} * b^{2}$

To prove G is abelian.

$$
\begin{aligned}
& \Rightarrow(a * b) *(a * b)=(a * a) *(b * b) \\
\Rightarrow & a *[b *(a * b)]=a *[a *(b * b)] \\
\Rightarrow b *(a * b)=a *(b * b) & \text { (Left Cancellation law) } \\
\Rightarrow(b * a) * b=(a * b) * b & \text { (Right Cancellation law) } \\
\Rightarrow(b * a)=(a * b) &
\end{aligned}
$$

$\therefore \mathrm{G}$ is abelian.

Hence the proof.

Theorem: 3

If $(\mathbf{G}, *)$ is an abelian group, then for all $\mathrm{a}, \mathrm{b} \boldsymbol{\varepsilon} \mathbf{G}$ then $(a * b)^{\boldsymbol{n}}=a^{\boldsymbol{n}} * b^{\boldsymbol{n}}$

Proof:

Let $(\mathrm{G}, *)$ be an abelian group and $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$. Then for all $\mathrm{n} \varepsilon \mathrm{Z}$,

$$
(a * b)^{n}=a^{n} * b^{n}
$$

Case (i) Let $n=0$

Then $a^{0}=e, b^{0}=e,(a * b)^{0}=e$

Hence the result is true when $\mathrm{n}=0$
Case (ii) let $n=1$
Let n be a positive integer

$$
\therefore(a * b)^{0}=a^{0} * b^{0}
$$

$$
(a * b)^{1}=a^{1} * b^{1}
$$

Assume that it is true for $n=k$, so that

$$
\begin{equation*}
(a * b)^{k}=a^{k} * b^{k} \rightarrow \tag{1}
\end{equation*}
$$

To prove it is true for $n=k+1$
Now $(a * b)^{k+1}=(a * b)^{k} *(a * b)$

$$
=a^{k} * b^{k} * a * b
$$

$$
\begin{aligned}
& =a^{k} *\left(b^{k} * a\right) * b \\
& =a^{k} *\left(a * b^{k}\right) * b \\
& =\left(a^{k} * a\right) *\left(b * b^{k}\right) \\
& =a^{k+1} * b^{k+1}
\end{aligned}
$$

Hence the result is true for $n=k+1$.

Hence by induction, the result is true for positive integer values of n .

Hence the proof.

Problems on Groups:

1. Show that set \mathbb{R} with the usual addition as a binary operation is an abelian

group.

Solution: Let $a, b, c \in \mathbb{R}$
(i) Closure property: Clearly $a+b \in \mathbb{R}$
(ii) Associative property: $a+(b+c)=(a+b)+c$
(iii) Identity element: Since $0 \in \mathbb{R}$, we have
$\Rightarrow a+0=0+a=a$
(iv) Additive Inverse: For $a \in \mathbb{R}$, we have $-a \in \mathbb{R}$, such that

$$
a+(-a)=0=(-a)+a
$$

\therefore The inverse of a is -a .
(v) Commutative property: $a+b=b+a$ for all $a, b \in \mathbb{R}$
$\therefore(\mathbb{R},+)$ is an abelian group.

Since \mathbb{R} contains infinite number of elements, $(\mathbb{R},+)$ is an infinite abelian group
2. Show that $(\mathbb{R}-\{1\}, *)$ is an abelian group, where $*$ is defined by $a * b=a+b+a b$, for all $a, b \in \mathbb{R}$.

Solution:

Here $\mathbb{R}-\{1\}$ means the set or real numbers except 1.
(i) Closure property:

Clearly $a * b=a+b+a b \in(\mathbb{R}-\{1\}) \quad[a \neq-1, b \neq-1]$
(ii) Associative property: Eity opil hris outuphend

$$
\begin{align*}
(a * b) * c & =(a+b+a b) * c \\
& =a+b+a b+c+(a+b+a b) c \\
& =a+b+a b+c+a c+b c+a b c \tag{A}
\end{align*}
$$

$$
\begin{align*}
a *(b * c) & =a *(b+c+b c) \\
& =a+b+c+b c+a(b+c+b c) \\
& =a+b+c+b c+a b+a c+a b c \tag{B}
\end{align*}
$$

From (A) and (B), we get

$$
(a * b) * c=a *(b * c), \quad \text { for all } a, b \in(\mathbb{R}-\{1\})
$$

(iii) Identity element:

Let ' e ' be the identity element.

Then, $\quad a * e=a$
$\Rightarrow a+e+a e=a$
$\Rightarrow e(1+a)=0$

$$
\Rightarrow e=0
$$

Here ' 0 ' is the identity element and $0 \in(\mathbb{R}-\{1\})$
(iv) Inverse:

Let the inverse of a be a^{-1}

Then, $a * a^{-1}=0 \quad$ (identity)
$\Rightarrow a+a^{-1}+a a^{-1}=0$
$\Rightarrow a^{-1}(1+a)=-a$
$\Rightarrow a^{-1}=-\frac{a}{1+a} \in(\mathbb{R}-\{1\})$
\therefore Inverse element is $-\frac{a}{1+a}$
(v) Commutative:

$$
\Rightarrow a * b=a+b+a b
$$

$$
=b+a+b a
$$

$$
=b b * a
$$

$\therefore a * b=b * a, \quad$ for all $a, b \in(\mathbb{R}-\{1\})$
$\therefore(\mathbb{R}-\{1\})$ is an abelian group.

3. Show that $\left(\mathbb{Q}^{+}, *\right)$ is an abelian group where $*$ is defined by

Solution:

Let \mathbb{Q}^{+}be the set of all positive rational numbers.
(i) Closure property:

Clearly $a * b=\frac{a b}{2} \in \mathbb{Q}^{+}$
(ii) Associative property:
$(a * b) * c=\frac{a b}{2} * c=\frac{\frac{a b c}{2}}{2}=\frac{a b c}{4}$
$a *(b * c)=a * \frac{b c}{2}=\frac{\frac{a b c}{2}}{2}=\frac{a b c}{4} \quad \ldots(2)$

From (1) and (2) we get,

(iii) Identity element:

Let ' e ' be the identity element.

Then, $\quad a * e=a$
$\Rightarrow \frac{a e}{2}=a \quad \Rightarrow e=2$
Here ' 2 ' is the identity element and $2 \in \mathbb{Q}^{+}=0014$ P $^{2}=A \mathbb{D}$
iv) Inverse:

Let the inverse of a be a^{-1}

Then, $a * a^{-1}=2 \quad$ (identity)

$$
\begin{aligned}
& \Rightarrow \frac{a a^{-1}}{2}=2 \\
& \Rightarrow a^{-1}=\frac{4}{a}
\end{aligned}
$$

\therefore Inverse element is $\frac{4}{a} \in \mathbb{Q}^{+}$
v) Commutative:

Now $a * b=\frac{a b}{2}$
$\therefore b * a=\frac{b a}{2}=\frac{a b}{2}$
$\therefore a * b=b * a$, for all $a, b \in \mathbb{Q}^{+}$

Hence $\left(\mathbb{Q}^{+}, *\right)$ is an abelian group.
4. Let $G=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$ Show that G is a group under the operation of matrix multiplication.

Solution:

Let $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{A}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \mathrm{C}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
$\therefore G=\{I, A, B, C\}$. Since it is finite set we shall form Cayley table and verify the axioms of a Group.

I is the identity element.

$$
A \cdot I=I \cdot A=A, B \cdot I=I \cdot B=B, C \cdot I=I \cdot C=C
$$

$$
A^{2}=A \cdot A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

$$
A B=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=C
$$

$$
A C=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=B
$$

$$
B^{2}=B \cdot B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

$$
C^{2}=C \cdot C=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

$$
B C=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=A
$$

$$
C A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=B
$$

Similarly $\mathrm{BA}=\mathrm{C}, \mathrm{CB}=\mathrm{A}=18$ 0pillariz outherend

Cayley table:

\cdot	I	A	B	C
I	I	A	B	C

A	A	I	C	B
B	B	C	I	A
C	C	B	A	I

(i) Closure property:

The first line of the table contains only all the elements of G. So G is closed under matrix multiplication.
(ii) Associative property:

Since matrix multiplication is associative it is true for G also. So Associative is satisfied.
(iii) Identity element:

I is the identity element.

(iv) Inverse:

Inverse of A is A, B is B and C is C .

So (G, \cdot) is a group under matrix multiplication.
5. Check whether $\boldsymbol{H}_{1}=\{0,5,10\}$ and $\boldsymbol{H}_{2}=\{0,4,8,12\}$ are subgroups of Z_{15} with respect to ${ }^{+15}$.

Solution:

The addition tables $(\bmod 15)$ for the sets H_{1} and H_{2} is given below:

For H_{1}

For H_{2}

| $+_{15}$ | 0 | 5 | 10 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 5 | 10 | | |
| 5 | 5 | 10 | 0 | | |
| 10 | 10 | 0 | 5 | | |
| | | | | | |

Here all the entries in the addition table for H_{1} are the elements of H_{1}.
$\therefore H_{1}$ is a subgroup of Z_{15}.

Also all the entries in the addition table for H_{2} are not the elements of H_{2}.
$\therefore H_{2}$ is not closed under addition.

