UNIT III NOSQL DATABASES 9

NoSQL — CAP Theorem — Sharding - Document based — MongoDB Operation:
Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding—Cassandra:
Data Model, Key Space, Table Operations, CRUD Operations, CQL Types — HIVE: Data
types, Database Operations, Partitioning — HiveQL — OrientDB Graph database —
OrientDB Features

NoSQL

NoSQL, also referred to as “not only SQL” or “non-SQL”, is an approach to
design database that enables the storage and querying of data outside the traditional
structures found in relational databases.

While NoSQL can still store data found within relational database management
systems (RDBMS), it just stores it differently compared to an RDBMS.

Instead of the typical tabular structure of a relational database, NoSQL databases
store data within one data structure. Since this non-relational database design does not
require aschema, it offers rapid scalability to manage large and typically unstructured
data sets.

NoSQL is also type ofdistributed database, which means that information is
copied and stored on various servers, which can be remote or local. This ensures
availability and reliability of data. If some of the data goes offline, the rest of the database
can continue to run.

Today, companies need to manage large data volumes at high speeds with the
ability to scale up quickly to run modern web applications in nearly every industry.

In this era of growth within cloud, big data, and mobile and web applications,
NoSQL databases provide that speed and scalability, making it a popular choice for their
performance and ease of use.

NoSQL versus SQL

Stands for Structured Query Language Stands for Not Only SQL

Relational database management system (RDEMS) Mon-relational database management system
Suitable for structured data with predefined schema Suitable for unstructured and semi-structured data

Data is stored in tables with columns and rows Data is stored in collections or documents

Follows ACID properties (Atomicity, Consistency,

. i i Does not necessarily follow ACID properties
Isolation, Durability) for transaction management Lt props

Supports JOIN and complex queries Does not support JOIN and complex queries

Uses normalized data structure Uses denormalized data structure

Requires vertical scaling to handle large volumes of|Horizontal scaling is possible to handle large volumes of

[+8
]
=
o

o
]
m

Examples: MySQL, PostgreSQL, ©Oracle, SQL Server,|Examples: MongeDB, Cassandra, Couchbase, Amazon
Microsoft SQL Server DynamoDB, Redis

Types of NoSQL databases

NoSQL provides other options for organizing data in many ways. By offering

diverse data structures, NoSQL can be applied to data analytics, managing big data, social
networks, and mobile app development.

A NoSQL database manages information using any of these primary data models:
1. Key-value store

o o [V o

o |« o o

This is typically considered the simplest form of NoSQL databases.

This schema-less data model is organized into a dictionary of key-value pairs, where
each item has a key and a value.

The key could be like something similar found in a SQL database, like a shopping cart
ID, while the value is an array of data, like each individual item in that user’s
shopping cart.

It’s commonly used for caching and storing user session information, such as
shopping carts.

However, it's not ideal when you need to pull multiple records at a time.

. Document store

As suggested by the name, document databases store data as documents.

They can be helpful in managing semi-structured data, and data are typically stored
in JSON, XML, or BSON formats.

This keeps the data together when it is used in applications, reducing the amount of
translation needed to use the data.

Developers also gain more flexibility since data schemas do not need to match across
documents (e.g. name vs. first name).

However, this can be problematic for complex transactions, leading to data corruption.
An example of a document-oriented database is MongoDB.

. Wide-column store

These databases store information in columns, enabling users to access only the
specific columns they need without allocating additional memory.

This database tries to solve for the shortcomings of key-value and document stores,
Apache HBase and Apache Cassandra are examples of open-source, wide-column
databases.

Apache HBase is built on top of Hadoop Distributed Files System that provides a way
of storing sparse data sets, which is commonly used in many big data applications.
Apache Cassandra, on the other hand, has been designed to manage large amounts of
data across multiple servers and clustering that spans multiple data centers.

https://www.ibm.com/products/databases-for-mongodb

It’s been used for a variety of use cases, such as social networking websites and
real-time data analytics.

4. Graph store

This type of database typically stores data from a knowledge graph.

Data elements are stored as nodes, edges and properties.

Any object, place, or person can be a node.

An edge defines the relationship between the nodes.

For example, a node could be a client, like IBM, and an agency like Ogilvy.

An edge would be to categorize the relationship as a customer relationship between
IBM and Ogilvy.

Graph databases are used for storing and managing a network of connections between
elements within the graph.

Neo4j - a graph-based database service based on Java with an open-source community
edition

S. In-memory store

With this type of database, like IBM solidDB, data resides in the main memory rather
than on disk, making data access faster than with conventional, disk-based databases.

Examples of NoSQL databases

Many companies have entered the NoSQL landscape. In addition to those

mentioned above, here are some popular NoSQL databases:

Apache CouchDB, anopen source, JSON document-based database that
uses JavaScript as its query language.

Elasticsearch, a document-based database that includes a full-text search engine.
Couchbase, akey-value and document database that empowers developers to build
responsive and flexible applications for cloud, mobile, and edge computing.

Advantages of NoSQL

Each type of NoSQL database has strengths that make it better for specific use

cases. However, they all share the following advantages for developers and create the
framework to provide better service customers, including:

1. Cost-effectiveness: It is expensive to maintain high-end, commercial RDBMS.
They require the purchase of licenses, trained database managers, and powerful
hardware to scale vertically. NoSQL databases allow you to quickly scale
horizontally, better allocating resources to minimize costs.

2. Flexibility: Horizontal scaling and a flexible data model also mean NoSQL
databases can address large volumes of rapidly changing data, making them great
for agile development, quick iterations, and frequent code pushes.

https://neo4j.com/users/ibm/
https://www.ibm.com/topics/couchdb
https://www.ibm.com/products/databases-for-elasticsearch
https://www.ibm.com/blog/getting-started-with-the-couchbase-autonomous-operator-on-ibm-cloud-kubernetes-service/

3. Replication: NoSQL replication functionality copies and stores data across
multiple servers. This replication provides data reliability, ensuring access during
down time and protecting against data loss if servers go offline.

4. Speed: NoSQL enables faster, more agile storage and processing for all users,
from developers to sales teams to customers. Speed also makes NoSQL databases
generally a better fit for modern, complex web applications, e-commerce sites, or
mobile applications.

In a nutshell, NoSQL databases provide high performance, availability,

and scalability.

CAP Theorem

In 2000, Eric Brewer outlined the “CAP” conjecture.

The CAP theorem says that in a distributed database system, can have at most only
two of Consistency, Availability, and Partition tolerance.

Consistency means that every user of the database has an identical view of the data at
any given instant.

Availability means that in the event of a failure, the database remains operational.
Partition tolerance means that the database can maintain operations in the event of
the network’s failure between two segments of the distributed system.

The issue of partition tolerance was theoretical in the 2000s.

Most systems resided in a single data center, and redundant network connectivity
within that data center prevented any partition from ever occurring.

If the data center failed, perhaps a failover data center would be bought online.
However, there were almost no true multiple data center applications.

But as web systems became global in scope and aspired to continual availability,

PR

8

User B

partition tolerance became a real issue.

299
o v

3

User A

/\

Network partition

Consider the distributed application shown in Figure.
In the event of the network partition shown, the system has two choices:

o either show each user a different view of the data,

o or shut down one of the partitions and disconnect one of the users.
Oracle’s RAC solution, which of course supported the ACID transactional model,
would choose consistency. In the event of a network partition—known in Oracle
circles as the “split brain” scenario—one of the partitions would choose to shut down.
However, in the context of a global social network application, or a worldwide
e-commerce system, the desired solution is to maintain availability even if some
consistency between users is sacrificed.

Eventual Consistency

CAP theorem provides a stark choice:

If the system wants to be undisturbed by network partitions, it must sacrifice strict
consistency between partitions.

However, even without considerations of CAP theorem, ACID transactions were
increasingly untenable in large-scale distributed websites.

This relates more to performance than to availability.

In any highly available database system, multiple copies of each data element must be
maintained in order to allow the system to continue operating in the event of node
failure.

In a globally distributed system, it becomes increasingly desirable to distribute nodes
around the world to reduce latency in various locations.

To ensure strict consistency, it is necessary to ensure that a database change is
propagated to multiple nodes synchronously and immediately.

For many websites, including social networks and certain e-commerce operations, the
worldwide synchronous consistency is unnecessary.

It doesn’t matter if my friend in Australia can see my tweet a few seconds before my
friend in America. Also both friends can see the tweet eventually.

This concept of eventual consistency has become a key characteristic of many NoSQL
databases.

The concept was most notably outlined by Werner Vogels, CTO of Amazon, and was
implemented in Amazon’s Dynamo key-value store.

Theoretical
"No Go zone”

Consistency

Everyone always
sees the same data

Strict
consistency

Availability
System stays up when
nodes fail

Eventual
consistency

Sharding

e Sharding allows a logical database to be partitioned across multiple physical servers.

e In a sharded application, the largest tables are partitioned across multiple database
servers.
Each partition is referred to as a shard.
This partitioning is based on a Key Value, such as a user ID.
When operating on a particular record, the application must determine which shard
will contain the data and then send the SQL to the appropriate server.

e Sharding is a solution used at the largest websites; Facebook and Twitter are the most
well-known examples.

e At both of these websites, data that is specific to an individual user is concentrated in
MySQL tables on a specific node.

Web
SErvers

Memcached
Servers

Master databases

Read-only slave
databases

Shard 1 (A-F) Shard 2 (G-P) Shard 3 (Q-Z)

Scaling with 3 web servers, 2 Memcached servers, and 3 database shards with 2 read-only
database slaves per shard

--read-only traffic --read/write traffic

The above Figure illustrates the Memcached and replication configuration.

In this example, there are three shards, and for simplicity’s sake, the shards are
labeled by the first letter of the primary key.

Rows with the key GUY are in shard 2, while key BOB would be allocated to shard 1.
The primary key would be hashed to ensure even distribution of keys to servers.

The exact number of servers being used at Facebook is constantly changing and not
always publicly disclosed, but in around 2011 they did reveal that they were using
more than 4,000 shards of MySQL and 9,000 Memcached servers in their
configuration.

This sharded MySQL configuration supported 1.4 billion peak reads per second, 3.5
million row changes per second, and 8.1 million physical 10s per second.

Sharding involves significant operational complexities and compromises, but it is
used for achieving data processing on a massive scale.

Sharding is simple in concept but incredibly complex in practice.

The application must contain logic that understands the location of any particular
piece of data and the logic to route requests to the correct shard.

Sharding is usually associated with rapid growth, so this routing needs to be dynamic.
Requests that can only be satisfied by accessing more than one shard thus need
complex coding as well, whereas on a non sharded database a single SQL statement
might suffice.

Sharding—together with caching and replication—is arguably the only way to scale a
relational database to massive web use.

However, the operational costs of sharding are huge.

e The drawbacks of a sharding strategy are:
1. Application complexity.
o In a statically sharded database, routing SQL would be hard enough
o Most massive websites are adding shards as they grow, so that a dynamic
routing layer must be implemented.
o This layer is to maintain Memcached object copies and to differentiate
between the master database and read-only replicas.
2. Crippled SOL.
o In a sharded database, it is not possible to issue a SQL statement that operates
across shards.
o SQL statements are limited to row level access.
o Joins and GROUP BY aggregate operations cannot be implemented in shards.
o0 Only programmers can query the database as a whole.
3. Loss of transactional integrity.
o ACID transactions against multiple shards are not possible.
o It also creates problems for conflict resolution, can create bottlenecks, has
issues for MySQL, and is rarely implemented.
4. QOperational complexity.
Load balancing across shards becomes extremely problematic.
Adding new shards requires a complex rebalancing of data.
Changing the database schema also requires a rolling operation across all the
shards, resulting in inconsistencies.
o A sharded database involves a huge amount of operational effort and
administrator skill.

