
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
Wrappers 

Wrapper classes provide a way to use primitive data types (int, boolean, etc..) as objects. 
The table below shows the primitive type and the equivalent wrapper class: 

Primitive Data Type Wrapper Class 

Byte Byte 

Short Short 

Int Integer 

Long Long 

Float Float 

Double Double 

Boolean Boolean 

Char Character 

 Use of Wrapper classes 

 Change the value in Method: Java supports only call by value. So, if we pass a 
primitive value, it will not change the original value. But, if we convert the 
primitive value in an object, it will change the original value. 

 Serialization: We need to convert the objects into streams to perform the 
serialization. If we have a primitive value, we can convert it in objects through the 
wrapper classes. 

 Synchronization: Java synchronization works with objects in Multithreading. 
 java.util package: The java.util package provides the utility classes to deal with 

objects. 
 Collection Framework: Java collection framework works with objects only. All 

classes of the collection framework (ArrayList, LinkedList, Vector, HashSet, 
LinkedHashSet, TreeSet, PriorityQueue, ArrayDeque, etc.) deal with objects only. 

 
Example: 

//Java Program to convert all primitives into its corresponding 
//wrapper objects and vice-versa 
public class WrapperExample3{ 
public static void main(String args[]){ 
byte b=10; 
short s=20; 
int i=30; 
long l=40; 
float f=50.0F; 
double d=60.0D; 
char c='a'; 
boolean b2=true; 
 
 
 
 
 
 
 
 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 
//Autoboxing: Converting primitives into objects 
Byte byteobj=b; 
Short shortobj=s; 
Integer intobj=i; 
Long longobj=l; 
Float floatobj=f; 
Double doubleobj=d; 
Character charobj=c; 
Boolean boolobj=b2; 

 
//Printing objects 

 

System.out.println("---Printing object values---"); 
System.out.println("Byte object: "+byteobj); 
System.out.println("Short object: "+shortobj); 
System.out.println("Integer object: "+intobj); 
System.out.println("Long object: "+longobj); 
System.out.println("Float object: "+floatobj); 
System.out.println("Double object: "+doubleobj); 
System.out.println("Character object: "+charobj); 
System.out.println("Boolean object: "+boolobj); 

 
//Unboxing: Converting Objects to Primitives 
byte bytevalue=byteobj; 
short shortvalue=shortobj; 
int intvalue=intobj; 
long longvalue=longobj; 
float floatvalue=floatobj; 
double doublevalue=doubleobj; 
char charvalue=charobj; 
boolean boolvalue=boolobj; 
 
//Printing primitives 
System.out.println("---Printing primitive values---"); 
System.out.println("byte value: "+bytevalue);  
System.out.println("short value: "+shortvalue); 
System.out.println("int value: "+intvalue); 
System.out.println("long value: "+longvalue); 
System.out.println("float value: "+floatvalue); 
System.out.println("double value: "+doublevalue); 
System.out.println("char value: "+charvalue); 
System.out.println("boolean value: "+boolvalue); 
} 
} 
 
Output 

---Printing object values--- 
Byte object: 10 
Short object: 20 
Integer object: 30 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 
 
 
 
 
 
Long object: 40 
Float object: 50.0 
Double object: 60.0 
Character object: a 
Boolean object: true 
---Printing primitive values--- 
byte value: 10 
short value: 20 
int value: 30 
long value: 40 
float value: 50.0 
double value: 60.0 
char value: a 
boolean value: true 

 

 Autoboxing 

The automatic conversion of primitive data type into its corresponding wrapper class is 
known as autoboxing, for example, byte to Byte, char to Character, int to Integer, long to 
Long, float to Float, boolean to Boolean, double to Double, and short to Short. 
Example: 

public class WrapperExample1{ 
public static void main(String args[]){ 
//Converting int into Integer 
int a=20; 
Integer i=Integer.valueOf(a);//converting int into Integer explicitly 
Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally 
System.out.println(a+" "+i+" "+j); 
} 
} 

Output 

20 20 20 
  

 Unboxing 
The automatic conversion of wrapper type into its corresponding primitive type is 
known as unboxing. It is the reverse process of autoboxing. 
 
Example: 
//Unboxing example of Integer to int 
public class WrapperExample2 
{ 
public static void main(String args[]) 
{ 
//Converting Integer to int  

3.14: Autoboxing 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
 
 
 
 
 
 
 
Integer a=new Integer(3); 
int i=a.intValue(); //converting Integer to int explicitly 
int j=a; //unboxing, now compiler will write a.intValue() internally 
System.out.println(a+" "+i+" "+j); 
} 
} 

Output 

3 3  3 
 
 

 

A Stack Trace is a list of method calls from the point when the application was 
started to the current location of execution within the program. A Stack Trace is 
produced automatically by the Java Virtual Machine when an exception is thrown 
to indicate the location and progression of the program up to the point of the 
exception. They are displayed whenever a Java program terminates with an 
uncaught exception. 
 

 We can   access   the   text   description   of   a   stack   trace   by   calling   the 

printStackTrace() method of the Throwable class. 

 The java.lang.StackTraceElement is a class where each element represents 
a single stack frame. 

 We can call the getStackTrace() method to get an array of StackTraceElement 

objects that we want analyse in our program. 

 
Class Declaration 

Following is the declaration for java.lang.StackTraceElement class 
public final class StackTraceElement extends Object implements Serializable 

 
Class constructors 
 

Constructor & Description 

StackTraceElement(String declaringClass, String methodName, String fileName, 
int lineNumber) 
This creates a stack trace element representing the specified execution point. 

 
Parameters: 

 declaringClass – the fully qualified name of the class containing the execution point 
represented by the stack trace element. 

 methodName – the name of the method containing the execution point represented 
by the stack trace element. 

A1: STACK TRACE ELEMENTS 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 fileName – the name of the file containing the execution point represented by the 
stack   trace element, or null if this information is unavailable 

 
 
 
 
 
 
 
 

 lineNumber – the line number of the source line containing the execution point 
represented by this stack trace element, or a negative number if 
this information is unavailable. A value of -2 indicates that the 
method containing the execution point is a native method. 

 Throws: NullPointerException – if declaringClass or methodName is null. 
 

Methods in StackTraceElement class: 

Method Name Description 

String getFileName() Gets the name of the source file containing the 
execution point represented by the 
StackTraceElement. 

int getLineNumber() Gets the line number of the source file containing 
the execution point represented by the 
StackTraceElement. 

String getClassName() Gets the fully qualified name of the class 
containing the execution point represented by the 
StackTraceElement. 

String getMethodName() Gets the name of the method containing the 
execution point represented by the 
StackTraceElement. 

boolean isNativeMethod() Returns true if the execution point of the 

StackTraceElement is inside a native method. 

String toString() Returns a formatted string containing the class 
name, method name, file name and the line 
number, if available. 

Example: 

The following program for finding factorial(using recursion) prints the stack trace of a 
recursive factorial function. 
import java.util.Scanner;  
public class StackTraceTest 
{ 

public static int factorial(int n) 
{ 

System.out.println(" Factorial ("+n+"):"); 
Throwable t=new Throwable();  
StackTraceElement[] frames=t.getStackTrace(); 
for(StackTraceElement f:frames) 
{ 

System.out.println(f); 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

} 
int r;  
 
 
 
 
 
 
 
 
if(n<=1) 

r=1; 
else 

r=n*factorial(n-1);  
 
System.out.println("return "+r); 
 return r; 

} 
public static void main(String[] args) 
{ 

Scanner in=new Scanner(System.in); 
System.out.println("Enter n: "); 
int n=in.nextInt(); 
factorial(n); 

} 
} 

 

Output: 
Enter n: 3 

Factorial (3): 
StackTraceTest.factorial(StackTraceTest.java:10) 
StackTraceTest.main(StackTraceTest.java:30) 
Factorial (2): 
StackTraceTest.factorial(StackTraceTest.java:10) 
StackTraceTest.factorial(StackTraceTest.java:20) 
StackTraceTest.main(StackTraceTest.java:30) 
Factorial (1): 
StackTraceTest.factorial(StackTraceTest.java:10) 
StackTraceTest.factorial(StackTraceTest.java:20) 
StackTraceTest.factorial(StackTraceTest.java:20) 
StackTraceTest.main(StackTraceTest.java:30) 
return 1 
return 2 

return 6 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 

 
 
 
 
 
 

 Assertion is achieved using “assert” keyword in java. 
 While executing assertion, it is believed to be true. If it fails, JVM will throw an error 

named AssertionError. It is mainly used for testing purpose. 
 Following are the situations in which we can use the assertions: 

 For making the program more readable and user friendly, the assert statements 
are used. 

 For validating the internal control flow and class invariant, the assertions are 
used. 

 Syntax of using Assertion: 

There are two ways to use assertion. 
First way: 

1. assert expression; 

Here the Expression is evaluated by the JVM and if any error occurs then 

AssertionError occurs. 
Second way: 

2. assert expression1 : expression2; 
In this, Expression1 is evaluated and if it is false then the error message is displayed 
with the help of Expression2. 

 Assertion Enabling and Disabling: 

By default, assertions are disabled. They have to be enabled explicitly 
For Enabling: 

We can enable the assertions by running the java program with the 

-enableassertions (or) -ea option: 

 

For Disabling:    -disableassertions (or) -da 
 

A2: “assert” Keyword 
 Assertions are Boolean expressions that are used to test/validate the code.  

 It is a statement in java that can be used to test your assumptions about the 

program. 

 Java assert keyword is used to create assertions in Java, which enables us to 

test the assumptions about our program.  

 For example, an assertion may be to make sure that an employee’s age is 

positive number. 
 

java –enableassertions AssertionDemo 

(or) 

java –ea AssertionDemo 

java –disableassertions AssertionDemo 

(or) 

java –da AssertionDemo 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CS3391 OBJECT ORIENTED PROGRAMMING 

 

 
When assertions are disabled, the class loader strips out the assertion code so 

that it won’t slow excetuion. 
Example: 

 
// Java program to demonstrate syntax of assertion 
import java.util.Scanner; 
class Test 
{ 
public static void main( String args[] ) 
{ 
int value = 15; 
 
 
 
 
 
 
 
assert value >= 20 : " Underweight"; 
System.out.println("value is "+value); 
} 
} 

 
Output: 

value is 15 
 

After enabling assertions 

Output: 

Exception in thread "main" java.lang.AssertionError: 
Underweight 

 
 Advantage of Assertions: 

 It provides an effective way to detect and correct programming errors.

 
 Where not to use Assertions 

 Assertions should not be used to replace error messages
 Do not use assertions for argument checking in public methods. Because if 

arguments are erroneous then that situation result in appropriate runtime 
exception such as
IllegalArgumentException, IndexOutOfBoundsException 
or NullPointerException. 

 

 


	Wrappers
	The table below shows the primitive type and the equivalent wrapper class:
	Use of Wrapper classes
	Example:
	Output
	Autoboxing
	Example: (1)
	Output (1)
	Unboxing
	Output (2)
	A Stack Trace is a list of method calls from the point when the application was started to the current location of execution within the program. A Stack Trace is produced automatically by the Java Virtual Machine when an exception is thrown to indicat...
	Class Declaration
	Parameters:
	Methods in StackTraceElement class:
	Example: (2)
	Output: Enter n: 3
	return 2
	 Following are the situations in which we can use the assertions:
	 Syntax of using Assertion:
	1. assert expression;
	2. assert expression1 : expression2;
	 Assertion Enabling and Disabling:
	Example: (3)
	Output:
	After enabling assertions
	 Advantage of Assertions:
	 Where not to use Assertions
	IllegalArgumentException, IndexOutOfBoundsException or NullPointerException.

