ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

LEGENDS

Plot legends give meaning to a visualization, assigning labels to the various plot elements. We
previously saw how to create a simple legend; here we’ll take a look at customizing the placement and
aesthetics of the legend in Matplotlib.

Plot legends give meaning to a visualization, assigning labels to the various plot elements. We
previously saw how to create a simple legend; here we’ll take a look at customizing the placement and
aesthetics of the legend in Matplotlib

plt.plot(x, np.sin(x), "-b', label="Sine")
plt.plot(x, np.cos(x), '—r', label="Cosine')
plt.legend();

Choosing Elements for the Legend

s The legend mncludes all labeled elements by default. We can change which elements and labels appear in the
legend by using the objects returned by plot commands.

* The pltplot() command 1s able to create multiple lines at once. and returns a list of created line mstances.
Passing any of these to plt.legend () wall tell 1t which to identify, along with the labels we'd like to specify
y = np.sin{x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt plot(x, y)
plt.legend(lines[:2],[ first, second’]); 3

# Applying label individually.

plt.plot(x, y[:, 0], label="first') 1 — .
plt.plot(x, y[:, 1], label="second’) n/’ L \
plt.plot(x, y[:, 2:]) .. H-' R .

pltlegend(framealpha=1, frameon=True); - T

=2

Multiple legends e
It is only possible to create a single legend for the entire plot. If you = Cosine
trv to create a second legend using plt legend() or ax legend(). itwill =~ & % = = . o

simply override the first one. We can work around this by creating a
new legend artist from scratch, and then using the lower-level ax.add_artist() method to manually add the second
artist to the plot

Example

import matplotlib.pyplot as plt

plt.style.use('classic’)

import numMpy as np

¥ = np.linspace(0, 10, 1000)

ax.legend(loc="lower center’, frameon=True, shadow=True,borderpad=1,fancybox=True)
fig

COLOR

In Matplotlib, a color bar is a separate axes that can provide a key for the meaning of colors in a plot.
For continuous labels based on the color of points, lines, or regions, a labeled color bar can be a great tool.
The simplest colorbar can be created with the plt.colorbar() function.
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Customizing Colorbars

Choosing color map.
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We can specify the colormap using the cmap argument to the plotting function that is creating the
visualization. Broadly, we can know three different categories of colormaps:

e Sequential colormaps - These consist of one continuous sequence of colors (e.g., binary or viridis).
e Divergent colormaps - These usually contain two distinct colors, which show positive and negative

deviations from a mean (e.g., RdBu or PuQr).

e Qualitative colormaps - These mix colors with no particular sequence (e.g., rainbow or jet).

Color limits and extensions

o Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply an instance
of plt.Axes, so all of the axes and tick formatting tricks we’ve learned are applicable.
e We can narrow the color limits and indicate the out-of-bounds values with a triangular arrow at the

top and bottom by setting the extend property.

plt.subplot(1, 2, 2)

plt.imshow(l, cmap="RdBu’)

plt.colorbar(extend="both’)

plt.clim(-1, 1);
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SUBPLOTS

e Matplotlib has the concept of subplots: groups of smaller axes that can exist together within a single

figure.

e These subplots might be insets, grids of plots, or other more complicated layouts.
e We’ll explore four routines for creating subplots in Matplotlib.
1. plt.axes: Subplots by Hand
2. plt.subplot: Simple Grids of Subplots
3. plt.subplots: The Whole Grid in One Go
4. plt.GridSpec: More Complicated Arrangements
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plt.subplots: The Whole Grid in One Go
¢ The approach just described can become quite tedious when vou're creating a large gnid of subplot
especially if vou'd like to hide the x- and v-

axis labels on the inner plots.

* For this purpose, plt.subplots() is the easier o}
tool to use (note the s at the end of subplots).

* Rather than creating a single subplot, this
function creates a full gnd of subplots n a gy
single line, returning them in a NumPy array.

¢ The arguments are the number of rows and 02f
mumber of columns, along with optional
keywords sharex and shareyv, which allow you
to specify the relationships between different 10
axes.

* Here we'll create a 2%3 gnd of subplots,
where all axes in the same row share their v- | gg
axis scale, and all axes in the same column
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share their x-axis scale 04r
fig, ax = pltsubplots(?, 3, sharex='col 0zl

sharey="row')

Note that by specifying sharex and sharey, we've
automatically removed inner labels on the gnd to
make the plot cleaner.
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