ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

LEGENDS

Plot legends give meaning to a visualization, assigning labels to the various plot elements. We
previously saw how to create a simple legend; here we’ll take a look at customizing the placement and
aesthetics of the legend in Matplotlib.

Plot legends give meaning to a visualization, assigning labels to the various plot elements. We
previously saw how to create a simple legend; here we’ll take a look at customizing the placement and
aesthetics of the legend in Matplotlib

plt.plot(x, np.sin(x), "-b', label="Sine")
plt.plot(x, np.cos(x), '—r', label="Cosine')
plt.legend();

Choosing Elements for the Legend

s The legend mncludes all labeled elements by default. We can change which elements and labels appear in the
legend by using the objects returned by plot commands.

* The pltplot() command 1s able to create multiple lines at once. and returns a list of created line mstances.
Passing any of these to plt.legend () wall tell 1t which to identify, along with the labels we'd like to specify
y = np.sin{x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt plot(x, y)
plt.legend(lines[:2],[first, second’]); 3

Applying label individually.

plt.plot(x, y[:, 0], label="first') 1 — .
plt.plot(x, y[:, 1], label="second’) n/’ L \
plt.plot(x, y[:, 2:]) .. H-' R .

pltlegend(framealpha=1, frameon=True); - T

=2

Multiple legends e
It is only possible to create a single legend for the entire plot. If you = Cosine
trv to create a second legend using plt legend() or ax legend(). itwill =~ & % = = . o

simply override the first one. We can work around this by creating a
new legend artist from scratch, and then using the lower-level ax.add_artist() method to manually add the second
artist to the plot

Example

import matplotlib.pyplot as plt

plt.style.use('classic’)

import numMpy as np

¥ = np.linspace(0, 10, 1000)

ax.legend(loc="lower center’, frameon=True, shadow=True,borderpad=1,fancybox=True)
fig

COLOR

In Matplotlib, a color bar is a separate axes that can provide a key for the meaning of colors in a plot.
For continuous labels based on the color of points, lines, or regions, a labeled color bar can be a great tool.
The simplest colorbar can be created with the plt.colorbar() function.

CS3352 - Foundations of Data Science

Customizing Colorbars

Choosing color map.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

We can specify the colormap using the cmap argument to the plotting function that is creating the
visualization. Broadly, we can know three different categories of colormaps:

e Sequential colormaps - These consist of one continuous sequence of colors (e.g., binary or viridis).
e Divergent colormaps - These usually contain two distinct colors, which show positive and negative

deviations from a mean (e.g., RdBu or PuQr).

e Qualitative colormaps - These mix colors with no particular sequence (e.g., rainbow or jet).

Color limits and extensions

o Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply an instance
of plt.Axes, so all of the axes and tick formatting tricks we’ve learned are applicable.
e We can narrow the color limits and indicate the out-of-bounds values with a triangular arrow at the

top and bottom by setting the extend property.

plt.subplot(1, 2, 2)

plt.imshow(l, cmap="RdBu’)

plt.colorbar(extend="both’)

plt.clim(-1, 1);

200

1000 :

SUBPLOTS

e Matplotlib has the concept of subplots: groups of smaller axes that can exist together within a single

figure.

e These subplots might be insets, grids of plots, or other more complicated layouts.
e We’ll explore four routines for creating subplots in Matplotlib.
1. plt.axes: Subplots by Hand
2. plt.subplot: Simple Grids of Subplots
3. plt.subplots: The Whole Grid in One Go
4. plt.GridSpec: More Complicated Arrangements

CS3352 - Foundations of Data Science

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

plt.subplots: The Whole Grid in One Go
¢ The approach just described can become quite tedious when vou're creating a large gnid of subplot
especially if vou'd like to hide the x- and v-

axis labels on the inner plots.

* For this purpose, plt.subplots() is the easier o}
tool to use (note the s at the end of subplots).

* Rather than creating a single subplot, this
function creates a full gnd of subplots n a gy
single line, returning them in a NumPy array.

¢ The arguments are the number of rows and 02f
mumber of columns, along with optional
keywords sharex and shareyv, which allow you
to specify the relationships between different 10
axes.

* Here we'll create a 2%3 gnd of subplots,
where all axes in the same row share their v- | gg
axis scale, and all axes in the same column

10

06

0.0

0B

share their x-axis scale 04r
fig, ax = pltsubplots(?, 3, sharex='col 0zl

sharey="row')

Note that by specifying sharex and sharey, we've
automatically removed inner labels on the gnd to
make the plot cleaner.

00
0002 04 06 08 10 0002 04 06 0.8 L0 0.0 02 04 06 08 L0

CS3352 - Foundations of Data Science

