
Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

Message Queuing Telemetry Transport (MQTT)

Example of a High-Level IoT Protocol Stack for CoAP and MQTT

At the end of the 1990s, engineers from IBM and Arcom (acquired in 2006 by Eurotech) were

looking for a reliable, lightweight, and cost-effective protocol to monitor and control a large

number of sensors and their data from a central server location, as typically used by the oil and

gas industries. Their research resulted in the development and implementation of the Message

Queuing Telemetry Transport (MQTT) protocol that is now standardized by the Organization

for the Advancement of Structured Information Standards (OASIS).

Considering the harsh environments in the oil and gas industries, an extremely simple protocol

with only a few options was designed, with considerations for constrained nodes, unreliable

WAN backhaul communications, and bandwidth constraints with variable latencies. These

were some of the rationales for the selection of a client/server and publish/subscribe framework

based on the TCP/IP architecture, as shown in Figure

Fig: MQTT Publish/Subscribe Framework

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

An MQTT client can act as a publisher to send data (or resource information) to an MQTT

server acting as an MQTT message broker. In the example illustrated in Figure the MQTT

client on the left side is a temperature (Temp) and relative humidity (RH) sensor that publishes

its Temp/RH data. The MQTT server (or message broker) accepts the network connection

along with application messages, such as Temp/RH data, from the publishers. It also handles

the subscription and unsubscription process and pushes the application data to MQTT clients

acting as subscribers.

The application on the right side of Figure is an MQTT client that is a subscriber to the

Temp/RH data being generated by the publisher or sensor on the left. This model, where

subscribers express a desire to receive information from publishers, is well known.

MQTT control packets run over a TCP transport using port 1883. TCP ensures an ordered,

lossless stream of bytes between the MQTT client and the MQTT server. MQTT is a

lightweight protocol because each control packet consists of a 2-byte fixed header with

optional variable header fields and optional payload.

 Fig: MQTT Message Format

The next field in the MQTT header is DUP (Duplication Flag). This flag, when set, allows the

client to notate that the packet has been sent previously, but an acknowledgement was not

received.

The QoS header field allows for the selection of three different QoS levels.

The next field is the Retain flag. Only found in a PUBLISH message the Retain flag notifies

the server to hold onto the message data. This allows new sub- scribers to instantly receive the

last known value without having to wait for the next update from the publisher.

The last mandatory field in the MQTT message header is Remaining Length. This field

specifies the number of bytes in the MQTT packet following this field.

MQTT sessions between each client and server consist of four phases: session establishment,

authentication, data exchange, and session termination. Each client connecting to a server has

a unique client ID, which allows the identification of the MQTT session between both parties.

When the server is delivering an application message to more than one client, each client is

treated independently.

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

These are the three levels of MQTT QoS:

➢ QoS 0: This is a best-effort and unacknowledged data service referred to as “at most

once” delivery. The publisher sends its message one time to a server, which transmits

it once to the subscribers. No response is sent by the receiver, and no retry is per- formed

by the sender. The message arrives at the receiver either once or not at all.

➢ QoS 1: This QoS level ensures that the message delivery between the publisher and

server and then between the server and subscribers occurs at least once. In PUBLISH

and PUBACK packets, a packet identifier is included in the variable header. If the

message is not acknowledged by a PUBACK packet, it is sent again. This level

guarantees “at least once” delivery.

➢ QoS 2: This is the highest QoS level, used when neither loss nor duplication of

messages is acceptable. There is an increased overhead associated with this QoS level

because each packet contains an optional variable header with a packet identifier.

 Confirming the receipt of a PUBLISH message requires a two-step acknowledgement

 process. The first step is done through the PUBLISH/PUBREC packet pair, and the

 second is achieved with the PUBREL/PUBCOMP packet pair. This level provides a

 “guaranteed service” known as “exactly once” delivery, with no consideration for the

 number of retries as long as the message is delivered once.

 Fig: MQTT QoS Flows

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

Constrained Application Protocol (CoAP)

The CoAP framework defines simple and flexible ways to manipulate sensors and actuators

for data or device management. The IETF CoRE working group has published multiple

standards-track specifications for CoAP, including the following:

➢ RFC 6690: Constrained RESTful Environments (CoRE) Link Format

➢ RFC 7252: The Constrained Application Protocol (CoAP)

➢ RFC 7641: Observing Resources in the Constrained Application Protocol (CoAP)

➢ RFC 7959: Block-Wise Transfers in the Constrained Application Protocol (CoAP)

➢ RFC 8075: Guidelines for Mapping Implementations: HTTP to the Constrained

Application Protocol (CoAP)

The CoAP messaging model is primarily designed to facilitate the exchange of messages over

UDP between endpoints, including the secure transport protocol Datagram Transport Layer

Security (DTLS). (UDP is discussed earlier in this chapter.) The IETF CoRE working group is

studying alternate transport mechanisms, including TCP, secure TLS, and WebSocket. CoAP

over Short Message Service (SMS) as defined in Open Mobile Alliance for Lightweight

Machine-to-Machine (LWM2M) for IoT device management is also being considered.

 Fig: CoAP Message Format

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

CoAP can run over IPv4 or IPv6. However, it is recommended that the message fit within a

single IP packet and UDP payload to avoid fragmentation. For IPv6, with the default MTU size

being 1280 bytes and allowing for no fragmentation across nodes, the maximum CoAP

message size could be up to 1152 bytes, including 1024 bytes for the payload.

CoAP defines four types of messages: confirmable, non-confirmable, acknowledge- ment, and

reset. Method codes and response codes included in some of these messages make them carry

requests or responses. CoAP code, method and response codes, option numbers, and content

format have been assigned by IANA as Constrained RESTful Environments (CoRE)

parameters.

Rohini college of Engineering and Technology

OCS352 IOT CONCEPTS AND APPLICATIONS

 Fig:CoAP Reliable Transmission Example

Figure shows a utility operations center on the left, acting as the CoAP client, with the CoAP

server being a temperature sensor on the right of the figure. The communication between the

client and server uses a CoAP message ID of 0x47. The CoAP Message ID ensures reliability

and is used to detect duplicate messages.

The client in Figure sends a GET message to get the temperature from the sensor.

Notice that the 0x47 message ID is present for this GET message and that the message is also

marked with CON. A CON, or confirmable, marking in a CoAP message means the message

will be retransmitted until the recipient sends an acknowledgement (or ACK) with the same

message ID.

In Figure the temperature sensor does reply with an ACK message referencing the correct

message ID of 0x47. In addition, this ACK message piggybacks a successful response to the

GET request itself. This is indicated by the 2.05 response code followed by the requested data.

