DIJKSTRA'S ALGORITHM

- Dijkstra's Algorithm solves the single-source shortest-pathsproblem.
- For a given vertex called the source in a weighted connected graph, find shortest paths to all its othervertices.
- The single-source shortest-paths problem asks for a family of paths, each leading from the source to a different vertex in the graph, though some paths may, of course, have edges in common.
- The most widely used applications are transportation planning and packet routing in communication networks including the Internet.
- It also includes finding shortest paths in social networks, speech recognition, document formatting, robotics, compilers, and airline crew scheduling.
- In the world of entertainment, one can mention pathfinding in video games and finding best solutions to puzzles using their state-spacegraphs.
- Dijkstra's algorithm is the best-known algorithm for the single-source shortestpaths problem.

ALGORITHM Dijkstra(G,s)

//Dijkstra's algorithm for single-source shortest paths
//Input: A weighted connected graph $G=(V, E)$ with nonnegative weights and its vertex s
//Output: The length $d v$ of a shortest path from s to v and its penultimate vertex $p v$ for every
// vertex v in V
Initialize(Q) //initialize priority queue to empty
for every vertex v in V
$d v \leftarrow \infty ; p v \leftarrow$ null
Insert ($Q, v, d v$) //initialize vertex priority in the priority queue
$D s \leftarrow 0$; $\operatorname{Decrease}\left(Q, s, d_{s}\right) / /$ update priority
of s with $d_{s} V_{T} \leftarrow \Phi$
for $i \leftarrow 0$ to $|V|-1$ do
$u^{*} \leftarrow \operatorname{DeleteMin}(Q) / /$ delete the minimum priority element
$V_{T} \leftarrow V_{T} \cup\left\{u^{*}\right\}$
for every vertex u in $V-V T$ that is

$$
\text { adjacent to } u^{*} \text { do if } d_{u}{ }^{*}+w\left(u^{*}, u\right)<
$$

d_{u}

$$
\begin{aligned}
& d_{u} \leftarrow d_{u}{ }^{*}+w\left(u^{*}, u\right) ; \\
& p_{u} \leftarrow u^{*} \operatorname{Decrease}(Q, \\
& \left.u, d_{u}\right)
\end{aligned}
$$

The time efficiency of Dijkstra's algorithm depends on the data structures used for implementing the priority queue and for representing an input graph itself. It is in $\Theta\left(|\mathrm{V}|^{2}\right)$ for graphs represented by their weight matrix and the priority queue implemented as an unordered array. For graphs represented by their adjacency lists and the priority queue implemented as a min- heap, it is in $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$.

Tree vertices

$b(a, 3)$
c(b, 3+4) d(b, 3+2) e(,$- \infty$)

d(b, 5)
$\mathbf{c}(\mathbf{b}, 7) \mathrm{e}(\mathrm{d}, 5+4)$

$\mathrm{c}(\mathrm{b}, 7) \quad \mathbf{e}(\mathbf{d}, 9)$

e(d, 9)
FIGURE 3.16 Application of Dijkstra's algorithm. The next closest vertex is shown in bold
The shortest paths (identified by following nonnumeric labels backward from a destination vertex in the left column to the source) and their lengths (given by numeric labels of the tree vertices) are as follows:

From a to $\mathrm{b}: \mathrm{a}-\mathrm{b}$ of length 3
From a to $\mathrm{d}: \mathrm{a}-\mathrm{b}-\mathrm{d}$ of length 5
From a to $\mathrm{c}: \mathrm{a}-\mathrm{b}-\mathrm{c}$ of length 7
From a to e : a - b-d - e of length 9

