ROHINII

COLLEGE OF ENGINEERING AND TECHNOLOGY
Approved by AICTE and affiliated to Anna University,(An ISO Certified Institution)

%' —nre ’.‘”J-O
‘._) Accredited by NAAC with A+ Grade

Department of Management Studies

MBA - | Semester

BA4106 Information Management

Dr.Jackson Daniel
Professor/ECE Department

Recognized Under Section 2(f) of
University Grants Commission, UGC
Act 1956

UNIT =l

Database Management
Systems

Object Oriented Database

Management System — OODBMS

Object-Oriented Database
Management System (OODBMS)

An Object-Oriented Database Management System (OODBMS) is a type of
database management system that extends the principles of object-oriented
programming to database management. In an OODBMS, data is represented as
objects, similar to how objects are represented in object-oriented programming

languages.

Object-Oriented DBS Concepts

Obijects — Real World Entities «— Jke entities in

an ER diagram

Encapsulate state and behavior

State: set of attribute values

_ Operations that action
Behavior: Set of [Method™™ gpjects may be uniquely

T specialized

Includes methods for creation and
destruction of objects

——> Objects offer encapsulation of both attributes
and specialized operations/methods

OODBS Concepts (Continued)

CLASS — 9roup of objects sharing the same
- attributes and methods

e.g. employee ...
department ...

INSTANCE — [ndividual, uniquely identified objects with
- attribute values

e.g. employee25 (‘John Smith’, M, 39, ...)

(analogous to entity-scheme == class
entity tuple values == instance
Class . Object(instance) (OO model)
Table : Tuple (Rational model)

Entity Set : Entity (ER model)

‘Object-()riented Data Model I

Loosely speaking, an object corresponds to an entity in the E-R
model.

The object-oriented paradigm is based on encapsulating code
and data related to an object into a single unit.

The object-oriented data model is a logical model (like the E-R
model).

Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.

‘ Object Structure I

e An object has associated with it:

— A set of variables that contain the data for the object. The
value of each variable is itself an object.

— A set of messages to which the object responds; each
message may have zero, one, or more parameters.

— A set of methods, each of which is a body of code to

implement a message; a method returns a value as the
response to the message

e The physical representation of data is visible only to the
implementor of the object

¢ Messages and responses provide the only external interface to
an object.

‘Messages and Methndsl

e The term message does not necessarily imply physical
message passing. Messages can be implemented as
procedure invocations.

e Methods are programs written in a general-purpose language
with the following features

— only variables in the object itself may be referenced directly

— data in other objects are referenced only by sending
messages

e Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, e.g., the attribute
address Is represented by a variable address and two
messages get-address and set-address.

— For convenience, many object-oriented data models permit
direct access to variables of other objects

‘ Object Classes I

Similar objects are grouped Iinto a class; each such object is
called an instance of its class

All objects in a class have the same

— variable types

— message interface
— methods

They may differ in the values assigned to variables
Example: Group objects for people into a person class

Classes are analogous to entity sets in the E-R model

‘Class Definition Example'

class employee {
[* Variables */
string name;
string address;

date start-date;
int salary;
[* Messages */
int annual-salary();

string get-name();

string get-address();

int sel-address(string new-address);
int employment-length();

b

e For strict encapsulation, methods to read and set other
variables are also needed

e employment-length is an example of a derived attribute

\ Inheritance I

e E.g., class of bank customers similar to class of bank
employees: both share some variables and messages, e.g.,
name and address But there are variables and messages
specific to each class e.qg., salary for employees and and
credit-rating for customers

e Every employee is a person; thus employee is a specialization
of person

e Similarly, customer is a specialization of person.

e Create classes person, employee and customer

— variables/messages applicable to all persons associated
with class person.

— variables/messages specific to employees associated with
class employee; similarly for customer

‘ Inheritance (Cont.) I

e Place classes into a specialization/IS-A hierarchy

— variables/messages belonging to class person are inherited
by class employee as well as customer

e Result is a class hierarchy

person
employee customer
officer teller secretary

Note analogy with ISA hierarchy in the E-R model

Object Identity I

e An object retains its identity even if some or all of the values of
variables or definitions of methods change over time.

e Object identity Is a stronger notion of identity than in

programming languages or data models not based on object
orientation.

- Value - data value; used in relational systems.
- Name - supplied by user; used for variables in procedures.

— Built-in — identity built into data model or programming
language.
+ NO user-supplied identifier is required.
+ form of identity used in object-oriented systems.

‘ Object Identifiers I

e Object identifiers used to uniquely identify objects
— can be stored as a field of an object, to refer to another
object.

- E.g., the spouse field of a person object may be an identifier
of another person object.

- can be system generated (created by database) or external
(such as social-security number)

‘ Object Cnntainment'

bicyele
wheel brake gear frame
rim spokes tire lever pad cable

Each component in a design may contain other components

Can be modeled as containment of objects. Objects containing
other objects are called complex or composite objects.

Multiple levels of containment create a containment hierarchy:
links interpreted as is-part-of, not is-a.

Allows data to be viewed at different granularities by different
users

‘ Object-Oriented Languages I

e Object-oriented concepts can be used as a design tool, and be
encoded into, for example, a relational database (analogous to
modeling data with E-R diagram and then converting to a set of
relations).

e The concepts of object orientation can be incorporated into a
programming language that is used to manipulate the
database.

— Object-relational systems — add complex types and
object-orientation to relational language.

— Persistent programming languages - extend object-oriented
programming language to deal with databases by adding
concepts such as persistence and collections.

‘ Persistent Programming Languages I

e Persistent programming languages:
— allow objects to be created and stored in a database
without any explicit format changes (format changes are
carried out transparently).

— allow objects to be manipulated in-memory — do not need to
explicitly load from or store to the database.

— allow data to be manipulated directly from the programming
language without having to go through a data manipulation
language like SQL.

e Due to power of most programming languages, it is easy to
make programming errors that damage the database.

e« Complexity of languages makes automatic high-level
optimization more difficult.

e Do not support declarative querying very well.

Persistence Of Objects I

e Approaches to make transient objects persistent include
establishing persistence by:

- Class - declare all objects of a class to be persistent;
simple but inflexible.

- Creation - extend the syntax for creating transient objects
to create persistent objects.

- Marking — an object that is to persist beyond program
execution is marked as persistent before program
termination.

- Reference — declare (root) persistent objects; objects are
persistent if they are referred to (directly or indirectly) from a
root object.

‘ Object Identity and Pointers I

e A persistent object is assigned a persistent object identifier.

e Degrees of permanence of identity:

- Intraprocedure - identity persists only during the execution
of a single procedure

- Intraprogram - identity persists only during execution of a
single program or query.

- Interprogram - identity persists from one program execution
to another.

— Persistent — identity persists throughout program executions
and structural reorganizations of data; required for
object-oriented systems.

‘Object Identity and Pointers (Cont.) I

e In O-0 languages such as C++, an object identifier is actually
an in-memory pointer.

e Persistent pointer — persists beyond program execution; can be
thought of as a pointer into the database.

Advantages / Disadvantages of OODB

Advantages Disadvantages

-Class inheritance ‘Handling of relationships
»Cumbersome

»Data duplicated
»Consistency not enforced

«Encapsulation of
attributes/methods

«Extensible/flexible definition

=Table based representation is often more
of complex data types and

»Natural
methods(support for complex ‘P Lj',
objects) »Intuitive

» Efficient

‘Much greater power given to
the programmer to add or

change databases semantics. | "Integrity/consistency poorly enforced
»More restrictive relational mode semantics

makes integrity correctness enforcement
easier.

*May give too much power to programmer

Thank You

