1.3 Instruction Set and Programming:

Instruction format:

- Instruction format of 8051 consist of Opcode and Operand
- The Opcode represents the type of operation to be performed, and
- The Operand represents the data upon which operation is performed.
- Example: MOV A, Rn; copies the content of the register Rn of selected register bank to A.

Instruction Sets Of 8051:

Instruction set of 8051is broadly classified as follows:

- 1. Data Transfer Instruction:
- 2. Instruction to Access External Data Memory
- 3. Rotate and Swap Instruction
- 4. Logical Instructions
 - i. Byte Level Logical Instruction
 - ii. Bit Level Logical Instruction
- **5.** Arithmetic Instruction:
 - i. Incrementing and Decrementing.
 - ii. Addition
 - iii. Subtraction
 - iv. Multiplication and Division
- 6. Jump Instruction & Call and Subroutine Instruction
- 7. Push and Pop Instruction
- 8. Data Exchange Instruction
- 1. Data Transfer Instruction:
- Data transfer Instruction set is used to perform data transfer function.
- Data can be transferred from or to external RAM or within the internal Memory itself.

S. No	Instruction	Addressin gModes	Operatio n
1.	MOV A,	Rn Register	Copies the content of the register Rn to A
2.	MOV A,Direct	Direct byte	Copies the content of the address specified to A
3.	MOV A,@Ri	Register indirect	Copy the content of address Ri to A
4.	MOV A,#data	Immediate	Load data given in the instruction to A
5.	MOV Rn,A	Register	Copies the content of A to Register Rn of theselected register bank.
6.	MOV direct, A	Direct Byte	Copies the content of A to the address specified within the instruction.
7.	MOV@Ri, A	Register indirect	Copies the content of A to the address Ri of theselected register bank.
8.	MOV DPTR, #data 16	Immediate	Load data pointer with a 16-bit constant.

Table 1: Data Transfer Instruction

2. Instruction to Access External Data Memory:

• These instructions are used perform the data accessing from external memory.

S. No	Instruction	Addressing Modes	Operation
1.	MOVX A ,Ri	Register	Copy the content of external address in Ri to A.
2.	MOVX A,@DPTR		Copy the content of external memory in DPTR to A.
3.	MOVX @Ri, A	Register indirect	Copy data from A to the external address in Ri.
4.	MOVX @ DPTR, A		Copy data from A to the external address in DPTR.

Table 2: Instruction to Access External Data Memory

3. Rotate and Swap Instruction:

• The instructions are used to rotate the bit position of the accumulator.

S. No	Instruction	Operation
1.	RLA	Rotate Accumulator left
2.	RRA	Rotate Accumulator right
3.	RLCA	Rotate Accumulator left through carry flag
4.	RRCA	Rotate Accumulator Right through carry flag
5.	SWAPA	Swap with in the Accumulator

Table 3: Rotate and Swap Instruction

4. Logical Instructions:

- The logical instructions are used to perform AND, OR, and XOR operations.
- Types:
- i. Byte Level Logical Instruction
- ii. Bit Level Logical Instruction

S. No	Instruction	Addressing Modes	Operation	Byte
1.	ANL A, Rn	Register	Content of register is logically ANDed with that of aAccumulator.	1
2.	ANL A,Direct	Direct byte	Content of register byte is logically ANDed with that of Accumulator	1
3.	ORL A,@Ri	Register indirect	The content of register is an address whose content is logically ORed with that of accumulator.	1
4.	CLR A	Implied	Clear the accumulator	1
5.	CPL A	Implied	Complement the content of accumulator	1

Table 4: Byte Level Logical Instruction

S. No	Instruction	Addressing Modes	Byte
1.	CLRC	Clear carry flag	1
2.	CPLC	Complement carry flag	1
3.	ANL C, Bit	AND direct bit to carry flag	2
4.	ORL C, Bit	Or direct to carry flag	2
5.	MOV C , Bit	Move direct bit to carry flag	2

Table 5: Bit Level Logical Instruction

5. Arithmetic Instruction:

- The instructions are used to perform the arithmetic operations.
- The common arithmetic operations such as addition, subtraction, multiplication and division are as possible with the 8051.
- According to operation, the instructions are:
- i. Incrementing and Decrementing.
- ii. Addition
- iii. Subtraction
- iv. Multiplication and Division
- i. Incrementing and Decrementing Instructions:

S. No	Instruction	Addressing Modes	Operation
1.	INC A	Register	Increment the content of Accumulator.
2.	INC Rn		Increment the content of direct byte address.
3.	DEC @ Ri	Register indirect	Decrement indirect RAM

Table 6: Incrementing and Decrementing Instructions

S. No	Instruction	Addressing Modes	Operation
1.	ADD A,direct	Direct byte	Add the content of direct byte to accumulator
2.	ADD A,@Ri	Register indirect	Add the content of address register to content of accumulator
3.	ADD A,#data	Immediate	Add the data in the instruction to the content of accumulator
4.	ADDC A,Rn	Register	Add the content of register to the accumulator with carry.
5.	SUBB A,Rn	Register	Subtract the content of register to the accumulator with borrow
6.	SUBB A,direct	Direct byte	Subtract the content of direct byte to accumulator with borrow
7.	SUBB A,@Ri	Register indirect	Subtract the content of address of register to content of accumulator with borrow
8.	SUBB A,@data	Immediate	Subtract the data in the instruction to the content of accumulator with borrow
9.	MUL AB	Register	Multiply unsigned integer in the accumulator and the reg. B
10.	DIV AB	Register	Divide the unsigned 8-bit integer in the accumulator by unsigned integer in reg.B

Table 7: Addition, Subtraction, Multiplication, Division Instructions

CONTROL INSTRUCTION:

- The control instructions are: Jump Instruction, Call and Subroutine Instruction
- It supports the conditional jumping and call functions.
- If any conditional jump occurs, control instruction checks the status whether it is correct or wrong.
- According to this, it stores the current address in program counter and jump to theappropriate location.
- If the condition is true, it executes the next instruction.

6. Jump Instructions, and Call and Subroutine Instructions:

S. No	Instruction	Addressing Modes	Byte
1.	JZ rel	Jump if accumulator is zero $(pc)\square(pc)+2$ $IF(A)=0 \text{ THEN}$ $(pc)\square(pc)+rel$	2
2.	JNC rel	Jump if no carry (pc)□(pc)+2 If CY=0 THEN (pc)□(pc)+rel	2
3.	JB bit	Jump if direct biis set $(pc)\Box(pc)+3 (pc)\Box(pc)+rel$	3
4.	DJNZ byte	New byte =byte1 If new byte is not equal to zero then jumpto 16 bit address specified.	2 or 3
5.	LCALL addr 16	Long jump $(pc)\Box(pc)+3$ $(sp)\Box(sp)+1$ $(sp)\Box(pc)$ $(sp)\Box(pc)$	3
6.	Return from interrupt $(pc)\square((sp))$ $(sp)\square(sp)-1$ $(pc)\square(sp)$ $(sp)\square(sp)-1$		1

Table 8: Jump Instructions, and Call and Subroutine Instructions

7. PUSH and POP instruction:

S. No	Instruction	Operation	Example	Byte
1.	PUSH Direct	((SP))⊔direct	PUSH DPL PUSH DPH	2
2.	POP direct	(sp)⊔(sp)-1	POP DPL POP DPH	2

Table 9: PUSH and POP instruction

8. Data Exchange instruction:

S. No	Instruction	Operation	
1.	XCHA,Rn	Exchange data bytes b/w reg Rn and A	1
2.	XCHA,direct	Exchange data b/w directly within instruction and A	2
3.	XCH A,Ri	Exchange data bytes b/w A and Ri	1

Table 10: Data Exchange instruction

1. Program for addition of two 8-bit numbers

CLR C

MOV A,# data 1

ADD A,# data 2

MOV DPTR, #8500

MOVX @ DPTR,A

LOOP: SJMP LOOP

2. Program for Subtraction Of Two 8-bit Number

CLR C

MOV A,# data 1

SUBB A,# data 2

MOV DPTR, #8500

MOVX @ DPTR,A

LOOP: SJMP LOOP

3. Program for Multiplication Of Two 8-bit Number

MOV A,# data 1

MOV B,# data 2

MUL AB

MOV DPTR, #8500

MOVX @ DPTR,A

INC DPTR

MOV A, B

MOVX @ DPTR,A

LOOP: SJMP LOOP

4. Program for Division Of Two 8-bit Number

MOV A,# dividend

MOV B,# divisor

DIV AB

MOV DPTR, #8500

MOVX @ DPTR,A

INC DPTR

MOV A, B

MOVX @ DPTR,A

LOOP: SJMP LOOP