

Exceptions

An exception is an unexpected event
(at run time), to disrupt the normal
termination of the program.

Therefore, these exceptions
one of the powerful mechanisms to handle the runtime errors so that normal flow of the
application can be maintained.

An exception may occur due

 Invalid data as input.

 Network connection may

 JVM may run out of memory.

 File cannot be found/opened.

These exceptions are caused by user error, programmer error, and physical resources. Based

on these, the exceptions can be

 Checked exceptions − A checked
time, also called as compile time exceptions. These exceptions cannot be ignored at the
time of compilation. So,

 Unchecked exceptions − An unchecked exception is an exception that occurs at run
time, also called as Runtime Exceptions
logic errors or improper use of an API. Runtime exceptions are ignored at the time of
compilation.

 Errors − Errors are not exceptions, but problems may arise beyond the control of the
user or the programmer. Errors are typically ignored in your code becaus
rarely do anything about an error. For example, if a stack overflow occurs, an error will
arise. They are also ignored at the time

 Error: An Error indicates serious problem that a reasonable application should not
try to catch.

 Exception: Exception indicates conditions that a reasonable application might try to
catch.

Exception Hierarchy

The java.lang.Exception class is the base class for all exception classes. All exception and
errors types are sub classes of class Throwabl
headed by Exception. This class is used for exceptional conditions that user programs should
catch. NullPointerException is an example of such an exception. Another branch, Er
used by the Java run-time system(JVM) to indicate errors having to do with the run
environment itself(JRE). StackOverflowError

Errors are abnormal conditions that happen in case of severe failures, these are not han
dled by the Java programs. Errors are generated to indicate errors generated by the runtime
environment. Example: JVM is out of memory. Normally, programs cannot recover from
errors.

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

is an unexpected event, which may occur during the execution of a program
normal flow of the program’s instructions. This leads to

 are needed to be handled. The exception handling
one of the powerful mechanisms to handle the runtime errors so that normal flow of the

 to the following reasons. They are.

may be disturbed in the middle of communications

memory.

found/opened.

These exceptions are caused by user error, programmer error, and physical resources. Based

can be classified into three categories.

checked exception is an exception that occurs at the
time, also called as compile time exceptions. These exceptions cannot be ignored at the

 the programmer should handle these exceptions.

− An unchecked exception is an exception that occurs at run
Runtime Exceptions. These include programming bugs, such as

logic errors or improper use of an API. Runtime exceptions are ignored at the time of

− Errors are not exceptions, but problems may arise beyond the control of the
user or the programmer. Errors are typically ignored in your code becaus
rarely do anything about an error. For example, if a stack overflow occurs, an error will

ignored at the time of compilation.

An Error indicates serious problem that a reasonable application should not

Exception indicates conditions that a reasonable application might try to

The java.lang.Exception class is the base class for all exception classes. All exception and
are sub classes of class Throwable, which is base class of hierarchy. One branch is

headed by Exception. This class is used for exceptional conditions that user programs should
catch. NullPointerException is an example of such an exception. Another branch, Er

time system(JVM) to indicate errors having to do with the run
StackOverflowError is an example of such an error.

Errors are abnormal conditions that happen in case of severe failures, these are not han
ams. Errors are generated to indicate errors generated by the runtime

environment. Example: JVM is out of memory. Normally, programs cannot recover from

AND TECHNOLOGY

PROGRAMMING

, which may occur during the execution of a program
 the abnormal

handling in java is
one of the powerful mechanisms to handle the runtime errors so that normal flow of the

These exceptions are caused by user error, programmer error, and physical resources. Based

the compile
time, also called as compile time exceptions. These exceptions cannot be ignored at the

− An unchecked exception is an exception that occurs at run
. These include programming bugs, such as

logic errors or improper use of an API. Runtime exceptions are ignored at the time of

− Errors are not exceptions, but problems may arise beyond the control of the
user or the programmer. Errors are typically ignored in your code because you can
rarely do anything about an error. For example, if a stack overflow occurs, an error will

An Error indicates serious problem that a reasonable application should not

Exception indicates conditions that a reasonable application might try to

The java.lang.Exception class is the base class for all exception classes. All exception and
, which is base class of hierarchy. One branch is

headed by Exception. This class is used for exceptional conditions that user programs should
catch. NullPointerException is an example of such an exception. Another branch, Er- ror are

time system(JVM) to indicate errors having to do with the run- time

Errors are abnormal conditions that happen in case of severe failures, these are not han-
ams. Errors are generated to indicate errors generated by the runtime

environment. Example: JVM is out of memory. Normally, programs cannot recover from

The Exception class has two main subclasses: IOException class and RuntimeException
Class.

Exceptions Methods

Method

public String getMessage()

public Throwable getCause()

public String toString()

public void printStackTrace()

public StackTraceElement []

getStackTrace()

public Throwable

fillInStackTrace()

Exception handling in java uses

1. try

2. catch

3. finally

4. throw

5. throws

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

The Exception class has two main subclasses: IOException class and RuntimeException

Description

Returns a detailed message about the exception that has
occurred. This message is initialized in the Throwable
constructor.

Returns the cause of the exception as represented
Throwable object.

Returns the name of the class concatenated with the re
sult of getMessage().

 Prints the result of toString() along with the stack
System.err, the error output stream.

Returns an array containing each element on the stack
trace. The element at index 0 represents the top of the
call stack, and the last element in the array represents
method at the bottom of the call stack.

Fills the stack trace of this Throwable object with the
current stack trace, adding to any previous information
in the stack trace.

uses the following Keywords

AND TECHNOLOGY

PROGRAMMING

The Exception class has two main subclasses: IOException class and RuntimeException

Returns a detailed message about the exception that has
occurred. This message is initialized in the Throwable

represented by a

Returns the name of the class concatenated with the re-

stack trace to

Returns an array containing each element on the stack
trace. The element at index 0 represents the top of the

represents the

Fills the stack trace of this Throwable object with the
current stack trace, adding to any previous information

The try/catch block is used as follows:

try

{

// block of code to monitor for

// the code you think can raise an

}

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)

{

// exception handler for ExceptionType

}

// optional

finally {

// block of code to be executed after

}

throwing and catching exceptions

Catching Exceptions

A method catches an exception using a combination of the
program code that may generate an exception should be placed inside the try/catch block. The
syntax for try/catch is depicted as

Syntax

try {

// Protected code

} catch (ExceptionName e1)

// Catch block

}

The code which is prone to exceptions is placed in the try block. When an exception oc
curs, that exception is handled by catch block associated with it. Every try block should be
immediately followed either by a

A catch statement involves declaring the type of exception that might be tried to catch. If an
exception occurs, then the catch block (or blocks) which follow the try block is checked. If the
type of exception that occurred is listed in a catch block, the exception is
block similar to an argument that

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

follows:

for errors

raise an exception

exOb)

ExceptionType1

exOb)

ExceptionType

executed after try block ends

ptions

A method catches an exception using a combination of the try and catch keywords. The
program code that may generate an exception should be placed inside the try/catch block. The

as below−

 {

The code which is prone to exceptions is placed in the try block. When an exception oc
curs, that exception is handled by catch block associated with it. Every try block should be

either by a catch block or finally block.

declaring the type of exception that might be tried to catch. If an
exception occurs, then the catch block (or blocks) which follow the try block is checked. If the
type of exception that occurred is listed in a catch block, the exception is passed to the catch

argument that is passed into a method parameter.

AND TECHNOLOGY

PROGRAMMING

keywords. The
program code that may generate an exception should be placed inside the try/catch block. The

The code which is prone to exceptions is placed in the try block. When an exception oc-
curs, that exception is handled by catch block associated with it. Every try block should be

declaring the type of exception that might be tried to catch. If an
exception occurs, then the catch block (or blocks) which follow the try block is checked. If the

passed to the catch

To illustrate the try-catch blocks

class Exception_example {

public static void main(String

{

int a,b;

try { // monitor a block of code.

= 0;

b = 10 / a; //raises the arithmetic exception

System.out.println(“Try block.”);

}

catch (ArithmeticException

{ // catch divide-by-zero error

System.out.println(“Division

}

System.out.println(“After try/catch

}

}

Output:

Division by zero.

After try/catch block.

Multiple catch clauses

In some cases, more than one exception could be raised by a single piece of code.
handle this multiple exceptions, two or more catch clauses can be specified. Here, each catch
block catches different type of exception. When an exception is thrown, each catch statement is
inspected in order, and the first
After one catch statement executes, the others are bypassed, and execution continues after the
try/catch block. The following example

class MultiCatch_Example {

public static void main(String args[])

try {

int a,b;

a = args.length;

System.out.println(“a = “ + a);

b = 10 / a; //may cause division

int arr[] = { 10,20 };

c[5] =100;

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

blocks the following program is developed.

main(String args[])

code. a

b = 10 / a; //raises the arithmetic exception

block.”);

(ArithmeticException e)

zero error

System.out.println(“Division by zero.”);

try/catch block.”);

In some cases, more than one exception could be raised by a single piece of code.
handle this multiple exceptions, two or more catch clauses can be specified. Here, each catch
block catches different type of exception. When an exception is thrown, each catch statement is

first one whose type matches that of the exception is executed.
After one catch statement executes, the others are bypassed, and execution continues after the

example traps two different exception types:

{

ng args[]) {

a);

b = 10 / a; //may cause division-by-zero error

AND TECHNOLOGY

PROGRAMMING

In some cases, more than one exception could be raised by a single piece of code. To
handle this multiple exceptions, two or more catch clauses can be specified. Here, each catch
block catches different type of exception. When an exception is thrown, each catch statement is

of the exception is executed.
After one catch statement executes, the others are bypassed, and execution continues after the

}

catch(ArithmeticException e)

{
System.out.println(“Divide by 0:

}

catch(ArrayIndexOutOfBoundsException

{

System.out.println(“Array index

}

System.out.println(“After try/catch

}

}

Here is the output generated by

C:\>java MultiCatch_

Example a = 0

Divide by 0: java.lang.ArithmeticException:

After try/catch blocks.

C:\>java MultiCatch_Example arg1

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:5

After try/catch blocks.

While the multiple catch statements is used, it is impo
subclasses must come before their superclasses. A catch statement which uses a superclass will
catch exceptions of that type plus any of its subclasses. Thus, a subclass would never
reached if it came after its superclas
example, consider the following program:

class MultiCatch_Example {

public static void main(String args[])

try {

int a,b;

a = args.length;

System.out.println(“a = “ + a);

b = 10 / a; //may cause division

int arr[] = { 10,20 };

c[5] =100;

}

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

e)

 “ + e);

catch(ArrayIndexOutOfBoundsException e)

index oob: “ + e);

try/catch blocks.”);

by the execution of the program in both ways:

java.lang.ArithmeticException: / by zero

>java MultiCatch_Example arg1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:5

While the multiple catch statements is used, it is important to remember that exception
subclasses must come before their superclasses. A catch statement which uses a superclass will
catch exceptions of that type plus any of its subclasses. Thus, a subclass would never
reached if it came after its superclass. And also, in Java, unreachable code is an error. For

consider the following program:

{

public static void main(String args[]) {

a);

b = 10 / a; //may cause division-by-zero error

AND TECHNOLOGY

PROGRAMMING

rtant to remember that exception
subclasses must come before their superclasses. A catch statement which uses a superclass will
catch exceptions of that type plus any of its subclasses. Thus, a subclass would never be

s. And also, in Java, unreachable code is an error. For

catch(Exception e) { System.out.println(“Generic

Exception catch.”);

}

catch(ArithmeticException e)

{

System.out.println(“Divide by

}

catch(ArrayIndexOutOfBoundsException

{

System.out.println(“Array index

}

System.out.println(“After try/catch

}

}

The exceptions such as ArithmeticException, and ArrayIndexOutOfBoundsException are
the subclasses of Exception class
raising the unreachable code exception.

nested try block

Sometimes a situation may arise
block itself may cause another error.

try

{

statement 1;

statement 2;

try

{

statement 1;

statement 2;

}

catch(Exception e)

{

}

}

catch(Exception e)

{

}

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

catch(Exception e) { System.out.println(“Generic

e)

by 0: “ + e);

catch(ArrayIndexOutOfBoundsException e)

index oob: “ + e);

try/catch blocks.”);

The exceptions such as ArithmeticException, and ArrayIndexOutOfBoundsException are
the subclasses of Exception class. The catch statement after the base class catch statement is

code exception.

arise where a part of a block may cause one error and
error. In such cases, exception handlers have to be nested.

AND TECHNOLOGY

PROGRAMMING

The exceptions such as ArithmeticException, and ArrayIndexOutOfBoundsException are
. The catch statement after the base class catch statement is

 the entire
nested.

....

The following program is an example

class Nestedtry_Example{

public static void main(String args[]){

try{

try{

System.out.println(“division”);

int a,b;

a=0;

b =10/a;

}

catch(ArithmeticException

{

System.out.println(e);

}

try

{

int a[]=new int[5];

a[6]=3;

}

catch(ArrayIndexOutOfBoundsException

{

System.out.println(e);

}

System.out.println(“other statement);

}

catch(Exception e)

{

System.out.println(“handeled”);}

System.out.println(“normal

}

}

throw keyword

The Java throw keyword is used to explicitly throw an exception. The general form of throw
is shown below:

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

example for Nested try statements.

public static void main(String args[]){

System.out.println(“division”);

catch(ArithmeticException e)

catch(ArrayIndexOutOfBoundsException e)

statement);

System.out.println(“handeled”);}

System.out.println(“normal flow..”);

The Java throw keyword is used to explicitly throw an exception. The general form of throw

AND TECHNOLOGY

PROGRAMMING

The Java throw keyword is used to explicitly throw an exception. The general form of throw

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throw
able. Primitive types, such as int or char, as well as non
Object, cannot be used as exceptions.

There are two ways to obtain a

1. using a parameter in a catch

2. creating one with the new

The following program explains

public class TestThrow1{

static void validate(int age){

try{

if(age<18)

throw new ArithmeticException(“not valid”);

else

System.out.println(“welcome

}

Catch(ArithmeticException

{

System.out.println(“Caught

throw e; // rethrow the exception

}

}

public static void main(String args[]){

try{

validate(13);

}

Catch(ArithmeticException

{

System.out.println(“ReCaught

}

}

}

The flow of execution stops immediately after the throw statement and any subsequent
statements that are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception. If it does find a mat
ferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If
no matching catch is found, then

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throw
such as int or char, as well as non-Throwable classes, such as String and

exceptions.

 Throwable object:

catch clause

one with the new operator.

explains the use of throw keyword.

static void validate(int age){

throw new ArithmeticException(“not valid”);

System.out.println(“welcome to vote”);

Catch(ArithmeticException e)

System.out.println(“Caught inside ArithmeticExceptions.”);

exception

public static void main(String args[]){

 e)

System.out.println(“ReCaught ArithmeticExceptions.”);

The flow of execution stops immediately after the throw statement and any subsequent
statements that are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of exception. If it does find a match, control is trans
ferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If

then the default exception handler halts the program and

AND TECHNOLOGY

PROGRAMMING

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throw-
Throwable classes, such as String and

The flow of execution stops immediately after the throw statement and any subsequent
statements that are not executed. The nearest enclosing try block is inspected to see if it has a

ch, control is trans-
ferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If

and prints the

stack trace.

the throws/throw Keywo

If a method does not handle
throws keyword. The throws keyword appears

The difference between throws
handling of a checked exception

The following method declares

Example

import java.io.*;

public class throw_Example1 {

public void function(int a) throws

// Method implementation throw

new RemoteException();

} // Remainder of class definition

}

A method can declare that it
tions are declared in a list separated by commas. For example, the following method declares
that it throws a RemoteException and an ArithmeticException

import java.io.*;

public class throw_Example2 {

public void function(int a) throws

// Method implementation

}

// Remainder of class definition

}

the Finally Block

The finally block follows a try block or a catch block. A finally block of code always ex
ecutes, irrespective of the occurrence of an Exception. A finally block appears at the end of the
catch blocks that follows the below

Syntax

try {

// Protected code

} catch (ExceptionType1 e1) {

// Catch block

} catch (ExceptionType2 e2) {

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

ords

 a checked exception, the method must be declared
keyword appears at the end of a method’s signature.

throws and throw keywords is that, throws is used to postpone
 and throw is used to invoke an exception explicitly.

 that it throws a Remote Exception −

throw_Example1 {

throws RemoteException {

// Method implementation throw

definition

it throws more than one exception, in which case
tions are declared in a list separated by commas. For example, the following method declares

RemoteException and an ArithmeticException −

throw_Example2 {

throws RemoteException,ArithmeticException {

definition

The finally block follows a try block or a catch block. A finally block of code always ex
ecutes, irrespective of the occurrence of an Exception. A finally block appears at the end of the

the below syntax.

e1) {

e2) {

AND TECHNOLOGY

PROGRAMMING

declared using the

postpone the
explicitly.

case the excep-
tions are declared in a list separated by commas. For example, the following method declares

The finally block follows a try block or a catch block. A finally block of code always ex-
ecutes, irrespective of the occurrence of an Exception. A finally block appears at the end of the

// Catch block

}

finally {

// The finally block always

}

Example

public class Finally_Example {

public static void main(String args[]) {

try {

int a,b;

a=0;

b=10/a;

} catch (ArithmeticException e) {

System.out.println(“Exception

}finally {

System.out.println(“The

}

}

}

ROHINI COLLEGE OF ENGINEERING AND

CS3391 OBJECT ORIENTED PROGRAMMING

always executes.

Finally_Example {

public static void main(String args[]) {

} catch (ArithmeticException e) {

System.out.println(“Exception thrown :” + e);

System.out.println(“The finally block is executed”);

AND TECHNOLOGY

PROGRAMMING

