Unit-IV Non-Parametric Test

A population in statistics means a set of object. The population is finite or infinite according to the number of elements of the set is finites or infinite.

Sampling:

A sample is a finite subset of the population. The number of elements in the sample is called size of the sample.

Large and small sample:

The number of elements in a sample is greater than or equal to 30 then the sample is called a large sample and if it is less than 30 , then the sample is called a small sample.

Parameters:

Statistical constant like mean μ, variance σ^{2}, etc., computed from a population are called parameters of the population.

Statistics:

Statistical constants like \bar{x}, variance S^{2}, etc., computed from a sample are called samlple staticts or statistics.

POPULATION (PARAMETER)	SAMPLE (STATISTICS)
Population size $=\mathrm{N}$	Sample size $=\mathrm{n}$
Population mean $=\mu$	Sample mean $=x$
Population s.d. $=\sigma$	Sample s.d. $=\mathrm{S}$
Population proportion $=\mathrm{P}$	Sample proportion $=\mathrm{p}$

Tests of significance or Hypothesis Testing:

Statistical Hypothesis:

In making statistical decision, we make assumption, which may be true or false are called Statistical Hypothesis.

Null Hypothesis(H_{0}):

For applying the test of significance, we first setup a hypothesis which is a statement about the population parameter. This statement is usually a hypothesis of no true difference between sample statistics and population parameter under consideration and so it is called null hypothesis and is denoted by H_{0}.

Alternative Hypothesis (H_{1}):

Suppose the null hypothesis is false, then something else must be true. This is called an alternative hypothesis and is denoted by H_{1}.
Eg. If H_{0} is population mean $\mu=300$, then H_{1} is $\mu \neq 300$ (ie. $\mu<300$ or $\mu>300$) or H_{1} is $\mu>300$ or H_{1} is $\mu<300$. So any of these may be taken as alternative hypothesis.
$t=\frac{15-14}{3.146 \sqrt{\frac{1}{10}+\frac{1}{12}}}=0.742$
Critical value: The critical value of t at 5% level of significance with degrees of freedom $n_{1}+n_{2}-2=10+12-2=20$ is 2.086
Conclusion: calculated value < table value
H_{0} is Accepted.

ii) F-test to test equality of populations variances:

Null Hypothesis H_{0} : $\sigma_{1}^{2}=\sigma_{2}^{2}$ The population Variances are equal
Alternative Hypothesis $\mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ The population Variances are not equal
Level of significance: $\alpha=5 \%$
Test Statistics:
$F=\frac{S_{1}{ }^{2}}{S_{2}{ }^{2}}$
Where $S_{1}^{2}=\frac{1}{n_{1}-1} \sum(x-x)^{2}=\frac{1}{10-1}(90)=10$
$S_{1}^{2}=\frac{1}{n_{1}-1} \sum(y-y)^{2}=\frac{1}{12-1}(108)=9.818$
Here $S_{1}{ }^{2}>S_{2}{ }^{2} \quad \therefore F=\frac{S_{1}{ }^{2}}{S_{2}{ }_{2}}=\frac{10}{9.818}=1.02$
Critical value:The critical value of F at 5% level of significance with degrees of freedom $\left(n_{1}-1, n_{2}-1\right)=(9,11)$ is 2.90
Here calculated value < table value, we accept H_{0}
Conclusion: Both null hypothesis $\mu \underset{1}{\neq \mu} \mu_{2}$ and $\sigma_{1}^{2}=\sigma_{2}^{2}$ are accepted.
Hence we may conclude the two samples are drawn from same normal population.
III χ^{2}-test:
(i). χ^{2}-Test for a specified population variance
(ii). χ^{2}-test is used to test whether differences between observed and expected frequencies are significant (goodness of fit).
(iii). χ^{2}-test is used to test the independence of attributes.
χ^{2}-Test for a specified population variance:
The test statistics $\chi^{2}=\frac{n s^{2}}{\sigma^{2}}$
Which follows χ^{2} - distribution with $(\mathrm{n}-1)$ degrees of freedom

Problem:

1. The lapping process is used to grind certain silicon wafers to the proper thickness is acceptable only σ, the population S.D. of the thickness of dice cut from the wafers, is at most 0.5 mil . Use the 0.05 level of significance to test the null hypothesis $\sigma=0.5$ against the alternative hypothesis $\sigma>0.5$, if the thickness of 15 dice cut from such wafers have S.D of 0.64 mil.

Solution:

Given $n=15, \mathrm{~s}=0.64, \sigma=0.5$
$H_{0}: \sigma=0.5, H_{1}: \sigma>0.5$
Under H_{0}, The test statistics $\chi^{2}=\frac{n s^{2}}{\sigma^{2}}=\frac{15(0.64)^{2}}{(0.5)^{2}}=24.576$
From χ^{2} table, with degrees of freedom $=14, \chi_{0.05}^{2}=23.625$
$\therefore \chi^{2}>\chi_{0.05}^{2} \quad H_{0}$ is rejected. Hence $\sigma>0.5$
χ^{2}-test is used to test whether differences between observed and expected frequencies are significant (goodness of fit):
$\frac{\left.\frac{\left(O_{i}-E_{i}\right)^{2}}{\left\lfloor O_{i}\right.} \right\rvert\,}{\lfloor }$
Where O_{i} is observed frequency, and E_{i} is the expected frequency.
If the data given in a series of n number, then degree of freedom $=\mathrm{n}-1$.
Note: In case of binomial distribution d. $\mathrm{f}=\mathrm{n}-1$, poisson distribution d.f $=\mathrm{n}-2$, normal distribution d. $\mathrm{f}=\mathrm{n}-3$.

Problem:

1. The following data give the number of aircraft accident that occurred during the various days of a week:

Days	$:$	Mon	Tue	Wed	Thu	Fri	Sat
No	of	15	19	13	12	16	15

Test the whether the accident are uniformly distributed over the week.
Solution:
The expected number of accident on any day $=\frac{90}{6}=15$
Let H_{0} : Accidents occur uniformly over the week
H_{1} : Accidents not occur uniformly over the week

Here 6 observations are given, degrees of freedom $=n-1=6-1=5$
From χ^{2} table, with degrees of freedom $=5, \chi_{0.05}^{2}=11.07$
$\therefore \chi^{2}<\chi_{0.05}^{2} \quad H_{0}$ is accepted.
Conclusion: \therefore Accidents occur uniformly over the week
2. A survey of 320 families with 5 children each revealed the following distribution:

No. of Boys:	5	4	3	2	1	0
No. of Girls:	0	1	2	3	4	5
No. of families:	14	56	110	88	40	12

Is the result consistent with the hypothesis that male and female births are equally probable?
Solution:
Let H_{0} : Male and female births are equally probable
H_{1} : Male and female births are not equally probable
Probability of male birth $=p=\frac{1}{2}$, Probability of female birth $=q=\frac{1}{2}$
The probability of x male births in a family of 5 is $p(x)=5 C p^{x} q^{5-x}, x=0,1,2 \ldots 5$
Expected number of families with x male births $=320 \times 5 C_{x} p^{x} q^{5-x}, x=0,1,2 \ldots 5$

$$
\begin{aligned}
& =320 \times 5 C_{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{5-x} \\
& =320 \times 5 C_{x}\left(\frac{1}{2}\right)^{5}=10 \times 5 C_{x}
\end{aligned}
$$

The χ^{2} is calculated using the following table:

No. of Boys	Observed Freqency $\left(O_{i}\right)$	Expected Frequency $E_{i}=10 \times 5 C_{x}$	$\left(O_{i}-E_{i}\right)$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
5	14	10	4	1.6
4	56	50	6	0.72
3	110	100	10	1
2	88	100	-12	1.44
1	40	50	-10	2
0	12	10	2	0.4
Total	320	320		7.16

$$
\therefore \chi^{2}=7.16
$$

The tabulated value of χ^{2} for $n-1=6-1=5$ degrees of freedom at 5% level of significance $=\chi_{0.05}^{2}=11.07$

Since $\chi^{2}<\chi_{0.05}^{2}$. So we accepted H_{0}.
Conclusion: \therefore The male and female births are equally probable.
3. Fit a poisson distribution to the following data and test the goodness of fit.

$\mathbf{x :}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{f (x) :}$	$\mathbf{2 7 5}$	$\mathbf{7 2}$	$\mathbf{3 0}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1}$

Solution:

Mean of the given distribution $=x=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{189}{392}=0.482$
To fit a poisson distribution to the given data:
We take the parameter of the poisson distribution equal to the mean of the given distribution. $=\lambda=\bar{x}=0.482$
The poisson distribution is given by $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2 \ldots \infty$
$x!\quad e^{-\lambda} \lambda^{x} \quad e^{-0.482}(0.482)^{x}$
and the expected frequencies are obtained by $f(x)=\left(\sum f_{i}\right) \times \frac{e^{-\lambda} \lambda^{x}}{x!}=392 \times \frac{e^{2}}{x!}$
we get $f(0)=392 \times \frac{e^{-0.482}(0.482)^{0}}{0!}=242.1, f(1)=392 \times \frac{e^{-0.482}(0.482)^{1}}{1!}=116.69$
$f(3)=4.518, f(4)=0.544, f(5)=0.052 \approx 0.1, f(6)=0.004 \approx 0$

$\mathrm{x}:$	0	1	2	3	4	5	6	Total
Expected Frequency:	242.1	116.69	28.12	4.518	0.544	0.052	0.004	392

H_{0} : The poisson distribution fit well into the data.
H_{1} : The poisson distribution does not fit well into the data.
The χ^{2} is calculated using the following table:

\mathbf{x}	Observed Freqency $\left(O_{i}\right)$	Expected Frequency $\left(E_{i}\right)$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
0	275	242.1	4.471
1	72	116.7	17.122
2	30	28.1	0.128
3	$\mathbf{7}$	$\mathbf{4 . 5}$	
4	$\mathbf{5}$	$\mathbf{1 5}$	$\mathbf{0 . 5}$
5	$\mathbf{2}$	$\mathbf{0 . 1}$	$\mathbf{1 9 . 2 1 8}$
6	$\mathbf{1}$	$\mathbf{0}$	
Total	392	392	40.939

$$
\therefore \chi^{2}=40.939
$$

The tabulated value of χ^{2} for $=7-1-1-3=2$ degrees of freedom at 5% level of significance $=\chi_{0.05}^{2}=5.991$

Since $\chi^{2}>\chi_{0.05}^{2}$. So we rejected H_{0}.

Conclusion: \therefore

The Poisson distribution is not a good fit to the given data.

χ^{2}-test is used to test the independence of attributes:

An attributes means a equality or characteristic. χ^{2} - test is used to test whether the two attributes are associated or independent. Let us consider two attributes A and B. A is divided into three classes and B is divided into three classes.

Now, under the null hypothesis H_{0} : The attributes A and B are independent and we calculate the expected frequency $E_{i j}$ for varies cells using the following formula.
$E_{i j}=\frac{R_{i} \times C_{j}}{N}, i=1,2, \ldots r, j=1,2, \ldots s$

$E\left(a_{11}\right)=\frac{R_{1} \times C_{1}}{N}$	$E\left(a_{12}\right)=\frac{R_{1} \times C_{2}}{N}$	$E\left(a_{13}\right)=\frac{R_{1} \times C_{3}}{N}$	R_{1}
$E\left(a_{21}\right)=\frac{R_{2} \times C_{1}}{N}$	$E\left(a_{22}\right)=\frac{R_{2} \times C_{2}}{N}$	$E\left(a_{23}\right)=\frac{R_{2} \times C_{3}}{N}$	R_{2}
$E\left(a_{31}\right)=\frac{R_{3} \times C_{1}}{N}$	$E\left(a_{32}\right)=\frac{R_{3} \times C_{2}}{N}$	$E\left(a_{33}\right)=\frac{R_{3} \times C_{3}}{N}$	R_{3}
C_{1}	$C_{2} C_{2}$	C_{3}	\mathbf{N}

and we compute $\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(\begin{array}{c}\left(O_{i j}-E\right)_{i j}\end{array} E_{i j}\right.}{E_{i j}}$
Which follows χ^{2} distribution with $\mathrm{n}=(\mathrm{r}-1)(\mathrm{s}-1)$ degrees of freedom at 5% or 1% level of significance.

1. Calculate the expected frequencies for the following data presuming two attributes viz., conditions of home and condition of child as independent.

Condition of Child	Condition of home		
		Clean	Dirty
	Clean	70	50
	Fair	80	20
	Dirty	35	45

Use Chi-Square test at $\mathbf{5 \%}$ level of significance to state whether the two attributes are independent.

Solution:

Null hypothesis H_{0} : Conditions of home and conditions of child are independent.
Alternate hypothesis H_{1} : Conditions of home and conditions of child are not independent.
Level of significance: $\alpha=0.05$

The test statistics: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

Condition of Child	Condition of home			Total
		Clean	Dirty	
	Clean	70	50	120
	Fair	80	20	100
	Dirty	35	45	80
Total		185	115	300

Expected Frequency $=\frac{\text { Corresponding row total } \times \text { Column total }}{\text { Grand Total }}$
Expected Frequency for $70=\frac{120 \times 185}{300}=74$, Expected Frequency for $80=\frac{100 \times 185}{300}=61.67$,
Expected Frequency for $35=\frac{80 \times 185}{300}=49.33$, Expected Frequency for $50=\frac{120 \times 115}{300}=46$,
Expected Frequency for $20=\frac{100 \times 115}{300}=38.33$, Expected Frequency for $45=\frac{80 \times 115}{300}=30.67$

$O_{i j}$	$E_{i j}$	$O_{i j}-E_{i j}$	$\left(O_{i j}-E_{i j}\right)^{2}$	$\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
70	74	-4	16	$\frac{16}{74}=0.216$
50	46	4	16	0.348
80	61.67	18.33	335.99	5.448
20	38.33	-18.33	335.99	8.766
35	49.33	-14.33	205.35	4.163
45	30.67	14.33	205.35	6.695
Total				25.636

$\therefore \chi^{2}=25.636$
$\alpha=0.05$ Degrees of freedom $=(r-1)(c-1)=(3-1)(2-1)=2 \quad \therefore \chi_{\alpha}^{2}=5.991$

Conclusion:

Since $\chi^{2}>\chi_{\alpha}^{2}$, we Reject our Null Hypothesis H_{0}. Hence, Conditions of home and conditions of child are not independent.
2. The following contingency table presents the reactions of legislators to a tax plan according to party affiliation. Test whether party affiliation influences the reaction to the tax plan at 0.01 level of signification.

Reaction					
Party	In favour	Neutral	Opposed	Total	
Party A	$\mathbf{1 2 0}$	$\mathbf{2 0}$	$\mathbf{2 0}$	$\mathbf{1 6 0}$	
Party B	$\mathbf{5 0}$	$\mathbf{3 0}$	$\mathbf{6 0}$	$\mathbf{1 4 0}$	
Party C	$\mathbf{5 0}$	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{1 0 0}$	
Total	$\mathbf{2 2 0}$	$\mathbf{6 0}$	$\mathbf{1 2 0}$	$\mathbf{4 0 0}$	

Solution:

Null hypothesis H_{0} : Party affiliation and tax plan are independent.
Alternate hypothesis H_{1} : Party affiliation and tax plan are not independent.
Level of significance: $\alpha=0.05$
The test statistic: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

Reaction				
Party	Infavour	Neutral	Opposed	Total
Party A	120	20	20	160
Party B	50	30	60	140
Party C	50	10	40	100
Total	220	60	120	$\mathbf{4 0 0}$

$$
\begin{array}{lll}
\mathrm{E}(120)=\frac{160 \times 220}{400}=88 ; & \mathrm{E}(20)=\frac{160 \times 60}{400}=24 ; & \mathrm{E}(20)=\frac{160 \times 120}{400}=48 \\
\mathrm{E}(50)=\frac{140 \times 220}{400}=77 ; & \mathrm{E}(30)=\frac{140 \times 60}{400}=21 ; & \mathrm{E}(60)=\frac{140 \times 120}{400}=42 \\
\mathrm{E}(50)=\frac{100 \times 220}{400}=55 ; & \mathrm{E}(10)=\frac{100 \times 60}{400}=15 ; & \mathrm{E}(40)=\frac{120 \times 100}{400}=30
\end{array}
$$

$O_{i j}$	$E_{i j}$	$O_{i j}-E_{i j}$	$\left(O_{i j}-E_{i j}\right)^{2}$	$\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
120	88	32	1024	11.64
20	24	-4	16	0.67
20	48	-28	784	16.33
50	77	-27	729	9.47
30	21	9	81	3.86
60	42	18	324	7.71
50	55	-5	25	0.45
10	15	-5	25	1.67
40	30	10	100	3.33
Total				

$\therefore \chi^{2}=55.13$
$\alpha=0.05$ Degrees of freedom $=(r-1)(s-1)=(3-1)(3-1)=4 \quad \therefore \chi_{0.05}^{2}=13.28$
Conclusion: Since $\chi^{2}>\chi_{\alpha}{ }^{2}$, we Reject our Null Hypothesis H_{0}
Hence, the Party Affiliation and tax plan are dependent.
3. From a poll of $\mathbf{8 0 0}$ television viewers, the following data have been accumulated as to, their levels of education and their preference of television stations. We are interested in determining if the selection of a TV station is independent of the level of education

Educational Level				
Public	High School	Bachelor	Graduate	Total
Broadcasting	50	150	$\mathbf{8 0}$	$\mathbf{2 8 0}$
Commercial Stations	$\mathbf{1 5 0}$	$\mathbf{2 5 0}$	$\mathbf{1 2 0}$	520
Total	$\mathbf{2 0 0}$	$\mathbf{4 0 0}$	$\mathbf{2 0 0}$	$\mathbf{8 0 0}$

(i) State the null and alternative hypotheses.
(ii) Show the contingency table of the expected frequencies. (iii) Compute the test statistic.
(iv) The null hypothesis is to be tested at $\mathbf{9 5 \%}$ confidence. Determine the critical value for this test.

Solution:

(i)Null Hypothesis: Selection of TV station is independent of level of education

Alternative Hypothesis: Selection of TV station is not independent of level of education
(ii) Level of significance: $\alpha=0.05$

Educational Level				
Public	High School	Bachelor	Graduate	Total
Broadcasting	50	150	80	280
Commercial Stations	150	250	120	520
Total	200	400	200	$\mathbf{8 0 0}$

To Find Expected frequency:

Expected Frequency $=\frac{\text { Corresponding row total } \times \text { Column total }}{\text { Grand Total }}$
Expected Frequency for $50=\frac{280 \times 200}{800}=70$, Expected Frequency for $150=\frac{280 \times 400}{800}=140$
Expected Frequency for $80=\frac{280 \times 200}{800}=70$, Expected Frequency for $150=\frac{520 \times 200}{800}=130$
Expected Frequency for $250=\frac{520 \times 400}{800}=260$, Expected Frequency for $120=\frac{520 \times 200}{800}=130$
The test statistic: $\chi^{2}=\sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
Analysis:

$O_{i j}$	$E_{i j}$	$O_{i j}-E_{i j}$	$\left(O_{i j}-E_{i j}\right)^{2}$	$\frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
50	70	-20	400	5.714
150	140	10	100	0.174
80	70	10	100	1.428
150	130	20	400	3.076
250	260	-10	100	0.385
120	130	-10	100	0.769
TOTAL				11.546

(iii) Test statistic $=11.546$
(iv) Critical Chi-Square $=5.991$,

Conclusion: Calculated value $>$ table value
Hence, we reject Null Hypothesis.

