Boolean Algebra:

A complemented distributive lattice is called Boolean Algebra.

A Boolean algebra is distributive lattice with " 0 " element and " 1 " element in which every element has a complement.

A Boolean algebra is a non empty set with 2 binary operations \wedge and \vee and is satisfied by the following conditions. $\forall a, b, c \in L$

1. $L_{1}: a \wedge a=a$ and $a \vee a=a$
2. $L_{2}: a \wedge b=b \wedge a$ and $a \vee b=b \vee a$
3. $L_{3}: a \wedge(b \wedge c)=(a \wedge b) \wedge c$ and $a \vee(b \vee c)=(a \vee b) \vee c$
4. $L_{4}: a \wedge(a \vee b)=a$ and $a \vee(a \wedge b)=\bar{a}$
5. $D_{1}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
6. $D_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
7. There exist between " 0 " and " 1 " such that $a \wedge 0=0, a \vee 0=a, a \wedge 1=a$ and

$$
a \vee 1=1 \forall a
$$

8. $\forall a \in L$, there exist corresponding element a^{\prime} in L such that $a \wedge a^{\prime}=0$ and $a \vee a^{\prime}=1$

Note:

Boolean Sum is defined as $1+1=1,1+0=1,0+1=1,0+0=0$

Boolean Product is defined as $1 \cdot 1=1,1 \cdot 0=0,0 \cdot 1=0,0 \cdot 0=0$

Absorption law in Boolean Algebra

1. Prove that $a+a b=a$

Solution:

$$
\begin{aligned}
\begin{aligned}
\text { LHS } & =a+a b \\
& =a(1+b) \\
& =a(1) \quad(\text { Distributive law) } \\
& (1+a)=1 \\
a+a b=a \quad & (a \cdot 1=a)
\end{aligned}
\end{aligned}
$$

2. Prove that $a+\bar{a} b=a+b$

Solution:

ObsGive OPTIARG OUTSPREAD

LHS $=a+\bar{a} b$

$$
\begin{array}{ll}
=a+a b+\bar{a} b & (a=a+a b) \\
=a+b(a+\bar{a}) & (\text { Distributive law }) \\
=a+b(1) & (a+\bar{a})=1 \quad(a \cdot 1=a)
\end{array}
$$

= RHS
3. Prove that $(a+b)(a+c)=a+b c$

Solution:

$$
\begin{array}{rlrl}
\text { LHS } & =(a+b)(a+c) & & \text { (S) } \\
& =a a+a c+a b+b c & & (\text { Distributive law) } \\
& =a+a c+a b+b c & (a \cdot a=a) \\
& =a(1+c)+a b+b c & & (\text { Distributive law) } \\
& =a+a b \pm b c & & (1+a=1) \\
& =a+b c & & \\
& =\text { RHS } &
\end{array}
$$

4. In any Boolean Algebra, show that $a=b \Leftrightarrow a \bar{b}+\bar{a} b=0$

Proof:

Let ($B, \cdot,+, 0,1$) be any Boolean Algebra.

Let $a, b \in B$ and $a=b$

Claim: $a \bar{b}+\bar{a} b=0$

Now $a \bar{b}+\bar{a} b=a \cdot \bar{b}+\bar{a} . b$

$$
\begin{aligned}
& =a \cdot \bar{a}+\bar{a} . a \quad \text { using (1) } \\
& =0+0 \quad(\text { since } a \cdot \bar{a}=0) \\
& =0
\end{aligned}
$$

Conversely, assume $a \bar{b}+\bar{a} b=0$

$$
\left.\begin{array}{l}
\Rightarrow a+a \bar{b}+\bar{a} b=a \\
\Rightarrow a+a \bar{b}=a \\
\Rightarrow(a+\bar{a}) \cdot(a+b)=a \\
\Rightarrow 1 \cdot(a+b)=a \\
\Rightarrow(a+b)=a
\end{array} \quad(a+\bar{a}=1) \quad \text { (Left Cancellation law) }\right) ~(a \cdot 1=a) \quad . \quad \text { (absorption law) }
$$

Consider $a \bar{b}+\bar{a} b=0$
$\Rightarrow a \bar{b}+\bar{a} b+b=b$
(Right Cancellation law)
$\Rightarrow a \bar{b}+b=b$
(Absorption law)
$\Rightarrow(a+b) \cdot(b+\bar{b})=b \quad$ (Distributive law)
$\Rightarrow(a+b) \cdot 1=a \quad(b+\bar{b}=1)$
$\Rightarrow(a+b)=b$
$(b \cdot 1=b)$

From (a) and (b) we get $a=a+b=b$

Hence $a=b$
5. If \boldsymbol{a} and \boldsymbol{b} are two elements of a Boolean algebra, then prove that

$$
a+(a \cdot b)=a, a \cdot(a+b)=a
$$

Proof:

Consider $a+(a \cdot b)=a=a \cdot 1+(a \cdot b)$

$$
=a \cdot(1+b)
$$

$$
=a \cdot 1 \quad[a+1=1,1+a=1]
$$

Consider $a \cdot(a+b)=a=a \cdot a+(a \cdot b)$

$$
=a+(a \cdot b)
$$

$$
=a \cdot 1+a \cdot b
$$

$$
=a \cdot(1+b)
$$

$$
=a \cdot 1 \quad[a \cdot a=a, a \cdot 0=0]
$$

$$
=a
$$

Hence the proof.
6. Prove that in a Boolean algebra, the complement of any element is unique.

Proof:

Let b and c be the complements of the element a .

Then $b+a=1, b \cdot a=0$

$$
a+c=1, a \cdot c=0
$$

Consider $b=1 \cdot b$

$$
\begin{aligned}
& =(a+c) \cdot b \\
& =a \cdot b+c \cdot b \\
& =0+c \cdot b \\
& =a \cdot c+c \cdot b
\end{aligned}
$$

$$
=c \cdot(a+b)
$$

$$
=1 \cdot c
$$

$$
=c
$$

Hence the complement is unique.

7. In a Boolean algebra show that the following statements are equivalent. For

 any a and b (i) $a+b=b$ (ii) $a \cdot b=a$ (iii) $a^{\prime}+b=1$ (iv) $a \cdot b^{\prime}=0$ (v) $a \leq b$
Proof:

To prove (i) \Rightarrow (ii)

Assume that $a+b=b$

To prove that $a \cdot b=a$

Now $a=a \cdot(a+b)$

$$
=a \cdot b
$$

Hence $(i) \Rightarrow(i i)$

To prove (ii) \Rightarrow (iii)

Assume that $a \cdot b=a$

To prove that $a^{\prime}+b=1$

Now $a^{\prime}+b=\left(a \cdot b^{\prime}\right)+b$

$$
=a^{\prime}+b^{\prime}+b
$$

$$
=a^{\prime}+1
$$

$$
=1
$$

Hence (ii) \Rightarrow (iii)

To prove (iii) $\Rightarrow(i v)$

Assume that $a^{\prime}+b=1$

To prove that $a \cdot b^{\prime}=0$

Taking complement on both sides
$\Rightarrow\left(a^{\prime}+b\right)^{\prime}=1^{\prime}$
$\Rightarrow a \cdot b^{\prime}=0$

Hence (iii) $\Rightarrow(i v)$

To prove (iv) $\Rightarrow(v)$

Assume that $a \cdot b^{\prime}=0$

To prove that $a \leq b$

Then $a \cdot b=a \cdot b+0$

$$
\begin{aligned}
& =a \cdot b+a \cdot b^{\prime} \\
& =a\left(b+b^{\prime}\right)
\end{aligned}
$$

$$
=a \cdot 1
$$

$$
=a
$$

Hence (iv) $\Rightarrow(v)$

To prove (v) $\Rightarrow(i)$

Assume that $a \leq b$

To prove that $a+b=b$

We have $a \cdot b=b$

$$
\Rightarrow a+b=(a \cdot b)+b
$$

$$
=a \cdot b+1 \cdot b
$$

$$
=(a+1) \cdot b
$$

$$
=1 \cdot b
$$

$$
=b
$$

Hence the proof.

8. Prove that in a Boolean algebra

$$
(a+b) \cdot\left(a^{\prime}+c\right)=a c+a^{\prime} b=a c+a^{\prime} b+b c
$$

Proof:

Now, $(a+b) \cdot\left(a^{\prime}+c\right)=(a+b) \cdot a^{\prime}+(a+b) \cdot c$

$$
\begin{aligned}
& =a^{\prime} \cdot(a+b)+(a+b) \cdot c \\
& =a a^{\prime}+a^{\prime} b+a c+b c \\
& =0+a^{\prime} b+a c+b c \\
& =a^{\prime} b+a c+b c
\end{aligned}
$$

$$
\begin{aligned}
& =a c\left(b+b^{\prime}\right)+a^{\prime} b\left(c+c^{\prime}\right)+b c\left(a+a^{\prime}\right) \\
& =a b c+a b^{\prime} c+a^{\prime} b c+a^{\prime} b c^{\prime}+a b c+a^{\prime} b c \\
& =a b c+a b^{\prime} c+a^{\prime} b c+a^{\prime} b c^{\prime} \\
& =a b c+a b^{\prime} c+a^{\prime} b\left(c+c^{\prime}\right) \\
& =a c\left(b+b^{\prime}\right)+a^{\prime} b\left(c+c^{\prime}\right) \\
& =a c(1)+a^{\prime} b(1) \\
& =a c+a^{\prime} b \\
& =\text { RHS }
\end{aligned}
$$

9. Show that in a Boolean algebra the law of the double complement holds.
(or) Prove the involution law $\left(a^{\prime}\right)^{\prime}=a$

Solution:

It is enough to prove that $a^{\prime}+a=1$ and $a \cdot a^{\prime}=0$

By domination laws of Boolean algebra, we get
$a^{\prime}+a=1$ and $a \cdot a^{\prime}=0$

By commutative law, we get $a^{\prime}+a=1$ and $a \cdot a^{\prime}=0$

Therefore complement of a^{\prime} is a
$\Rightarrow\left(a^{\prime}\right)^{\prime}=a$
$\Rightarrow a^{\prime \prime}=a$

Hence the proof.

