## **Delta Connection:**



Fig. 4.30 Balanced Delta Load

A balanced 3 phase load when connected in delta across a 3 phase balanced supply, the total power in three phase delta connected load is equal to the three times of power in star connected load.

Phase voltage,  $V_{ph} = V_{L}$ 

Phase impedance,  $Z_{ph} = R + jX = \sqrt{R^2 + X^2}$ 

Phase current, 
$$I_{ph} = \frac{V_{ph}}{Z_{ph}}$$

Line current, 
$$I_L = \sqrt{3} I_{ph}$$

Power factor, 
$$\cos \phi = \frac{R}{Z}$$

per phase power =  $V_{ph} I_{ph} \cos \phi$ 

Total power,  $P = \sqrt{3} V_L I_L \cos \phi$ 

Reactive power per phase =  $V_{ph} I_{ph} \sin \phi$ 

Total reactive power,  $Q = \sqrt{3} V_L I_L \sin \phi$ 

Apparent power per phase =  $V_{ph}$   $I_{ph}$ 

Total apparent power,  $S = \sqrt{3} V_L I_L$