4.4 Cosets

Define Left Coset and Right Coset of H in G.

Let (H, *) be a subgroup of (G, *).

For any $a \in G$, the left coset of H, denoted by a * H, is the set

 $a * H = \{a * h: h \in H\}$ for all $a \in G$

For any $a \in G$, the right coset of H, denoted by H * a, is the set

$$H * a = \{h * a : h \in H\}$$
 for all $a \in C$

Theorem: 1

Let (H, *) be a subgroup of (G, *). Then any two left Cosets (right Cosets) of H of a group (G, *) are either identical or disjoint and the union of distinct left Cosets of H is G (or) The set of all distinct left Cosets of the subgroup H of the group (G, *) forms a partition of G.

ERVE OPTIMIZE OUTSPH

Proof:

Let $a, b \in G$

Consider the Cosets a * H and b * H

We shall prove that a * H = b * H (or) $a * H \cap b * H = \emptyset$

Suppose
$$a * H \cap b * H \neq \emptyset$$

Let $c \in a * H \cap b * H = \emptyset$
 $\Rightarrow c \in a * H \text{ and } c \in b * H$
Let $c = a * h_1$ and $c = b * h_2$ for all $h_1, h_2 \in H$
 $\therefore a * h_1 = b * h_2$
Take h_1^{-1} on both sides
 $\Rightarrow (a * h_1) * h_1^{-1} = (b * h_2) * h_1^{-1}$
 $\Rightarrow a * (h_1 * h_1^{-1}) = b * (h_2 * h_1^{-1})$
 $\Rightarrow a * e = b * h_3$ where $h_3 = h_2 * h_1^{-1}$
 $\Rightarrow a = b * h_3$
 $\Rightarrow a \in b * h_3$
 $\Rightarrow a \in b * h_3$
 $\Rightarrow a * H \subseteq b * H \dots (1)$

From (1) and (2) we have a * H = b * H

 \therefore Any two left cosets are either identical or distinct.

Each element of the left Coset a * H is also an element of G.

 \therefore Every left coset of a * H is a subset of G.

Hence $\bigcup_{a \in G} a * H \subseteq G \dots (3)$

If $a \in G$, $a \in a * H$ then $a \in \bigcup_{a \in G} a * H$

 $G \subseteq \bigcup_{a \in G} a * H \dots (4)$

 \therefore The set of all distinct left cosets of H is a partition "n' of the group G.

Hence the proof.

LAGRANGE'S THEOREM:

The order of a subgroup of a finite group is a divisor of the order of the group.

i.e., if H is a subgroup of a finite group (G, *) then O(H) divides O(G).

Proof:

Let (G, *) be a finite group of order n and H be a subgroup of G with order m.

ULAM, KANYA

 $\Rightarrow O(H) = m \& O(G) = n$

We will prove that O(H)

Since H contains m distinct elements, every left cost of H contains exactly m elements.

(Write the theorem: 1)

Let $a_1 * H$, $a_2 * H$, ..., $a_k * H$ be the distinct left cosets of H. Let $G = a_1 * H \cup a_2 * H \cup \ldots \cup a_k * H$ $O(G) = O(a_1 * H) + O(a_2 * H) + \ldots + O(a_k * H)$ $= O(H) + O(H) + \ldots + O(H)$ $= m + m + \ldots + m$ (n times) \Rightarrow *n* = *mk* $\implies n/m = k$ \Rightarrow m divides n. This means that O(H) O(G). Hence the proof. **Normal Subgroup** 2.00 A subgroup (H,*) of (G,*) is said to be normal subgroup of G, for $x \in G$ and for $h \in H$, if x * h = h * x (or) for all $x \in G$, xH = Hx

Note:

Consider H as a subgroup of G, then the subgroup H is said to be normal,

for all
$$x \in G$$
, $x * h * x^{-1} = H(\text{or})$ for all $x \in G$, $x * h * x^{-1} \in H$

Theorem: 1

Every subgroup of an abelian group is normal.

Proof:

Let (G,*) be an abelian group and (H,*) be a subgroup of G.

Let $x \in G$ be any element.

Then
$$xH = \{x * h / h \in H\}$$

= $\{h * x / h \in H\}$ (G is abelian)
= Hx

Since "x" is arbitrary, $xH = Hx \forall x \in G$

Hence H is a normal subgroup of G.

SERVE Hence the proof. TSPRE

Theorem: 2

Prove that intersection of two normal subgroup of (G,*) is a normal subgroup

of (G,*).

Proof:

Let (H,*) and (K,*) are two normal subgroup.

 \Rightarrow H and K are subgroups of G.

 \Rightarrow *H* \cap *K* is a subgroup of G. (Already proved)

To prove $(H \cap K, *)$ is a normal subgroup of (G,*).

Let $h \in H \cap K$ be any element and $x \in G$ be any element.

Then $x \in G$ and $h \in H$ and $h \in K$

Since *H* and *K* are normal, $x * h * x^{-1} \in H$...(1)

and $x * h * x^{-1} \in K \dots (2)$

From (1) and (2) we get,

 $x * h * x^{-1} \in H \cap K$

BSERVE Hence the proof. TSPREP

Hence $H \cap K$ is a normal subgroup of G.

MA8351 DISCRETE MATHEMATICS