4.4 Cosets

Define Left Coset and Right Coset of H in G.

Let $(H, *)$ be a subgroup of $(G, *)$.

For any $a \in G$, the left coset of H, denoted by $a * H$, is the set
$a * H=\{a * h: h \in H\}$ for all $a \in G$

For any $a \in G$, the right coset of H , denoted by $H * a$, is the set
$H * a=\{h * a: h \in H\}$ for all $a \in G$

Theorem: 1

Let $(\boldsymbol{H}, *)$ be a subgroup of $(\boldsymbol{G}, *)$. Then any two left Cosets (right Cosets)
of \mathbf{H} of a group $(\boldsymbol{G}, *)$ are either identical or disjoint and the
union of distinct left Cosets of \mathbf{H} is \mathbf{G} (or) The set of all distinct left Cosets
of the subgroup \mathbf{H} of the group $(G, *)$ forms a partition of \mathbf{G}.

Proof:

Let $a, b \in G$

Consider the Cosets $a * H$ and $b * H$

We shall prove that $a * H=b * H$ (or) $a * H \cap b * H=\varnothing$

Suppose $a * H \cap b * H \neq \varnothing$

Let c $\epsilon a * H \cap b * H=\varnothing$
$\Rightarrow c \in a * H$ and $c \in b * H$

Let $c=a * h_{1}$ and $c=b * h_{2}$ for all $h_{1}, h_{2} \in \bar{H}$
$\therefore a * h_{1}=b * h_{2}$

Take h_{1}^{-1} on both sides
$\Rightarrow\left(a * h_{1}\right) * h_{1}^{-1}=\left(b * h_{2}\right) * h_{1}^{-1}$
$\Rightarrow a *\left(h_{1} * h_{1}^{-1}\right)=b *\left(h_{2} * h_{1}^{-1}\right)$
$\Rightarrow a * e=b * h_{3}$ where $h_{3}=h_{2} * h_{1}$
$\Rightarrow a=b * h 3$
Ar
$\Rightarrow a \in b * h 3$
$\Rightarrow a * H \subseteq b * H \ldots$ (1)

IIIrly $b * H \subseteq a * H \ldots$. (2)
From (1) and (2) we have $a * H=b * H$
\therefore Any two left cosets are either identical or distinct.

Each element of the left Coset $a * H$ is also an element of G.
\therefore Every left coset of $a * H$ is a subset of G.
Hence $\bigcup_{a \in G} a * H \subseteq G \ldots$ (3)
If $a \in G, a \in a * H$ then $a \in \bigcup_{a \in G} a * H$
$G \subseteq \bigcup_{a \in G} a * H \ldots$ (4)
\therefore The set of all distinct left cosets of H is a partition " n ' of the group G .

Hence the proof.

LAGRANGE'S THEOREM:

The order of a subgroup of a finite group is a divisor of the order of the group.
i.e., if \mathbf{H} is a subgroup of a finite group $(G, *)$ then $\mathbf{O}(\mathbf{H})$ divides $\mathbf{O}(\mathbf{G})$.

Proof:

Let $(G, *)$ be a finite group of order \bar{n} and H be a subgroup of G with order m .
$\Rightarrow O(H)=m \& O(G)=n$

We will prove that $O(H) / O(G)$

Since H contains m distinct elements, every left cost of H contains exactly m elements.
(Write the theorem: 1)

Let $a_{1} * H, a_{2} * H, \ldots, a_{k} * H$ be the distinct left cosets of
H. Let $G=a_{1} * H \quad \cup a_{2} * H \quad \cup \ldots \cup a_{k} * H$
$O(G)=O\left(a_{1} * H\right)+O\left(a_{2} * H\right)+\ldots+O\left(a_{k} * H\right)$
$=O(H)+O(H)+\ldots+O(H)$
$=m+m+\ldots+m$ (n times)
$\Rightarrow n=m k$
$\Rightarrow n m=k$
$\Rightarrow \mathrm{m}$ divides n .

This means that ${ }^{O(H)} / O(G)$.
Hence the proof.

Normal Subgroup

A subgroup $(H, *)$ of $(G, *)$ is said to be normal subgroup of G , for $x \in G$ and for $h \in H$, if $x * h=h * x$ (or) for all $x \in G, x H=H x$

Note:

Consider H as a subgroup of G, then the subgroup H is said to be normal,
for all $x \in G, x * h * x^{-1}=H$ (or) for all $x \in G, x * h * x^{-1} \in H$

Theorem: 1

Every subgroup of an abelian group is normal.

Proof:

Let $(G, *)$ be an abelian group and $(H, *)$ be a subgroup of G.

Let $x \in G$ be any element.

Then $x H=\{x * h / h \in H\}$

$$
=\{h * x / h \in H\} \quad \text { (} \mathrm{G} \text { is abelian) }
$$

$$
=H x
$$

Since " x " is arbitrary, $x H=H x \forall x \in G$

Hence H is a normal subgroup of G.

Prove that intersection of two normal subgroup of ($G, *$)is a normal subgroup of ($\boldsymbol{G}, *)$.

Proof:

Let $(H, *)$ and $(K, *)$ are two normal subgroup.
$\Rightarrow \mathrm{H}$ and K are subgroups of G .
$\Rightarrow H \cap K$ is a subgroup of G. (Already proved)

To prove $(H \cap K, *)$ is a normal subgroup of $(G, *)$.

Let $h \in H \cap K$ be any element and $x \in G$ be any element.

Then $x \in G$ and $h \in H$ and $h \in K$

Since H and K are normal, $x * h * x^{-1} \in H_{\odot} .$. (1) and $x * h * x^{-1} \in K \ldots$ (2)

From (1) and (2) we get,

$$
x * h * x^{-1} \in H \cap K
$$

Hence $H \cap K$ is a normal subgroup of G .

