UNIT-I

TESTING THE HYPOTHESIS

$\left(\chi^{2}\right)$ Chi-Square Test
$1.5 \chi^{2}$ test of Goodness of Fit

- χ^{2} test is used to test whether differences between observed and expected frequencies are significant.
- χ^{2} is used to test the independence of attributes
- The test statistic $\chi^{2}=\sum\left[\frac{(o-E)^{2}}{E}\right]$
- Where O-Observed Frequency
- E - Expected Frequency
- If the data is given in a series of " n " numbers then degrees of freedom
$=n-1$.

Note:

- If the case of Binomial Distribution the degrees of freedom $=n-1$
- Poisson distribution the degrees of freedom $=n-2$
- Normal distribution the degrees of freedom $=n-3$
1.The following table gives the number of aircraft accident that occurred during the various days of the week. Test whether the accidents are uniformly distributed over the week.

Days : Mon Tue Wed Thu Fri Sat Total
No. of accidents : $14 \quad 18 \quad 12 \quad 11$

Solution:

The expected number of accidents on any day $=\frac{84}{6}=14$
Let H_{0} : The accidents occur uniformly over the week.

Observed Frequency	Expected Frequency	$(\mathbf{O}-\mathbf{E})$	$\frac{(o-E)^{2}}{E}$
14	14	0	0
18	14	4	1.143

12	14	-2	0.286
11	14	-3	0.643
15	14	1	0.071
14	14	0	0

Now $\chi^{2}=\sum\left[\frac{(o-E)^{2}}{E}\right]=2.143$
Number of degrees of freedom $V=n-1=7-1=6$
Critical value: The tabulated value of χ^{2} at 5% for $6 \mathrm{~d} . \mathrm{f}$ is 12.59

Conclusion:

Since $\chi^{2}=2.143<12.59$, then the null hypothesis H_{0} is accepted.
i.e., we conclude that the accidents are uniformly distributed over the week

1. 4 coins were tossed 160 times and the following results were obtained.

No. of heads	$:$	0	1	2	3	4
Frequency	$:$	19	50	52	30	9

Test the goodness of fit with the help of χ^{2} on the assumption that the coins are unbiased

Solution:

Set the null hypothesis: H_{0} : The coins are unbiased.
The probability if getting the success of heads is $p=\frac{1}{2}$

- And $q=1-p=1-\frac{1}{2}=\frac{1}{2}$
- When 4 coins are tossed, the probability of getting " r " heads is given by $P(X=r)=$ $n C_{r} p^{r} q^{n-r}, \mathrm{r}=0,1,2, \ldots$
- The expected frequency of getting $0,1,2,3,4$ heads are given by
- $P(X=0)=160 \times 4 C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4-0}=10$
- $P(X=1)=160 \times 4 C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4-1}=40$
- $P(X=2)=160 \times 4 C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{4-2}=60$
- $P(X=3)=160 \times 4 C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{4-3}=40$
- $P(X=4)=160 \times 4 C_{0}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{4-4}=10$

Observed Frequency	Expected Frequency	$(\mathbf{O}-$ $\mathbf{E})$	$\frac{(o-E)^{2}}{E}$
19	10	-9	8.1
50	40	10	2.5
52	60	-8	1.067
30	40	-10	2.5
9	10	-1	0.1

Now $\chi^{2}=\sum\left[\frac{(O-E)^{2}}{E}\right]=14.267$
Number of degrees of freedom $V=n-1=5-1=4$
Critical value: The tabulated value of χ^{2} at 5% for 4 d. f is 9.488

Conclusion:

Since $\chi^{2}=14.267>9.488$, then the null hypothesis H_{0} is rejected.
i.e., The coin are biased

