
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

DESCRIBING SEMANTICS

Semantics refers to the meaning associated with the statement in a programming

language. It is all about the meaning of the statement which interprets the program easily.

There is no single widely acceptable notation or formalism for describing semantics

Several needs for a methodology and notation for semantics:

 Programmers need to know what statements mean

 Compiler writers must know exactly what language constructs do

 Correctness proofs would be possible

 Compiler generators would be possible

 Designers could detect ambiguities and inconsistencies

Types:

 Operational Semantics

 Denotational Semantics

 Axiomatic Semantics

1. Operational Semantics

Describe the meaning of a program by executing its statements on a machine, either

simulated or actual. The change in the state of the machine (memory, registers, etc.) defines the

meaning of the statement

 To use operational semantics for a high-level language, a virtual machine is needed

 A hardware pure interpreter would be too expensive

 A software pure interpreter also has problems

 The detailed characteristics of the particular computer would make actions difficult

to understand

 Such a semantic definition would be machine dependent

A better alternative: A complete computer simulation

• The process:

– Build a translator (translates source code to the machine code of an idealized computer)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

– Build a simulator for the idealized computer

• Evaluation of operational semantics:

– Good if used informally (language manuals, etc.)

– Extremely complex if used formally (e.g., VDL), it was used for describing semantics of PL/I.

Uses of operational semantics:

 Language manuals and textbooks

 Teaching programming languages

 Two different levels of uses of operational semantics:

 Natural operational semantics

 Structural operational semantics

Evaluation

 Good if used informally (language manuals, etc.)

 Extremely complex if used formally (e.g.,VDL)

2. Denotational Semantics

Based on recursive function theory It is the The most abstract semantics description

method, It was Originally developed by Scott and Strachey (1970)

The process of building a denotational specification for a language:

 Define a mathematical object for each language entity

 Define a function that maps instances of the language entities onto instances of the

corresponding mathematical objects

 The meaning of language constructs are defined by only the values of the program's

variables

Denotational Semantics: program state

The state of a program is the values of all its current variables

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

Let VARMAP be a function that, when given a variable name and a state, returns the current

value of the variable

 VARMAP(ij, s) = vj

Evaluation of Denotational Semantics

 It can be used to prove the correctness of programs

 It provides a rigorous way to think about programs

 It can be an aid to language design

 It has been used in compiler generation systems

 Because of its complexity, it is of little use to language users

3. Axiomatic Semantics

 It is Based on formal logic (predicate calculus)

 Original purpose: formal program verification

 Axioms or inference rules are defined for each statement type in the language (to allow

transformations of logic expressions into more formal logic expressions)

 The logic expressions are called assertions

 An assertion before a statement (a precondition) states the relationships and constraints

among variables that are true at that point in execution

 An assertion following a statement is a postcondition

 A weakest precondition is the least restrictive precondition that will guarantee the

postcondition

Pre-post form: {P} statement {Q}

An example: a := b + 1 {a > 1}

One possible precondition: {b > 10}

Weakest precondition: {b > 0}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Program proof process: The post-condition for the whole program is the desired results. Work

back through the program to the first statement. If the precondition on the first statement is the

same as the program spec, the program is correct.

An axiom for assignment statements:

An inference rule for logical pretest loops

For the loop construct:

 {P} while B do S end {Q}

the inference rule is:

Where I is the loop invariant. Characteristics of the loop invariant

I must meet the following conditions:

1. P => I (the loop invariant must be true initially)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

2. {I} B {I} (evaluation of the Boolean must not change the validity of I)

 3. {I and B} S {I} (I is not changed by executing the body of the loop)

4. (I and (not B)) => Q (if I is true and B is false, Q is implied)

5. The loop terminates (this can be difficult to prove)

 The loop invariant I is a weakened version of the loop postcondition, and it is also

a precondition.

 I must be weak enough to be satisfied prior to the beginning of the loop, but when

combined with the loop exit condition, it must be strong enough to force the truth

of the postcondition

Evaluation of Axiomatic Semantics

 Developing axioms or inference rules for all of the statements in a language is difficult

 It is a good tool for correctness proofs, and an excellent framework for reasoning about

 programs, but it is not as useful for language users and compiler writers

 Its usefulness in describing the meaning of a programming language is limited for

language users or compiler writers

Denotation Semantics vs Operational Semantics

 In operational semantics, the state changes are defined by coded algorithms

 In denotational semantics, the state changes are defined by rigorous mathematical

functions

