Unit 5

HAZARD IDENTIFICATION TECHNIQUES

Chapter 5.2

Fault Tree Analysis - Event Tree Analysis Qualitative and Quantitative Risk

Assessment- Checklist Analysis Fault Tree Analysis (FTA):

1. **Definition:**

• Fault Tree Analysis (FTA) is a systematic method used to identify and analyze the possible causes of a specific undesired event (the "top event") by constructing a graphical representation of the potential fault paths.

2. Components of FTA:

- Top Event: The undesired event to be analyzed.
- Basic Events: The root causes or initiating events contributing to the top event.
- Logical Gates: Connect events in a logical manner, representing combinations that lead to the top event.

3. Analysis Process:

- Identify the top event and its consequences.
- Break down the event into basic events.
- Use logical gates (AND, OR) to model relationships.
- Assess the probability of each event.
- Determine the critical paths leading to the top event.

4. Benefits of FTA:

- Systematic identification of potential causes.
- Visual representation aids in understanding complex relationships.
- Quantitative assessment of probabilities.

Event Tree Analysis:

1. **Definition:**

 Event Tree Analysis (ETA) is a graphical representation of the potential outcomes following a specific initiating event. It helps assess the consequences of various scenarios and their probabilities.

2. Components of ETA:

- Initiating Event: The event that triggers the analysis.
- Branches: Represent possible outcomes or consequences.
- Probabilities: Assigned to each branch based on the likelihood of occurrence.

3. Analysis Process:

- Identify the initiating event.
- Develop branches representing possible consequences.
- Assign probabilities to each branch.
- Analyze the sequence of events leading to different outcomes.

4. Benefits of ETA:

- Visualization of possible outcomes.
- Probability assessment aids in risk quantification.
- Useful for decision-making and risk management.

Qualitative and Quantitative Risk Assessment:

1. Qualitative Risk Assessment:

Definition:

• Involves assessing risks without assigning numerical values. Risks are categorized based on severity, likelihood, and other qualitative criteria.

Process:

- Identify and list potential risks.
- Qualitatively assess the severity, likelihood, and other relevant factors.
- Categorize risks as low, medium, or high.

2. Quantitative Risk Assessment:

• Definition:

 Involves assigning numerical values to risks, allowing for quantitative analysis and comparison.

Process:

- Assess risks using numerical values for factors such as probability, impact, and frequency.
- Calculate risk scores or use quantitative models.
- Prioritize risks based on quantitative assessments.

Checklist Analysis:

1. **Definition:**

• Checklist Analysis involves using a structured checklist to systematically evaluate potential hazards, risks, or compliance with safety standards.

2. Application:

• Widely used in various industries for safety inspections, audits, and compliance assessments.

3. Process:

- Develop a checklist containing items related to safety, regulations, or specific requirements.
- Conduct inspections or assessments using the checklist.
- Document findings and note areas of compliance or non-compliance.
- Use checklist results for corrective actions and improvements.

4. Benefits of Checklist Analysis:

- Ensures a systematic and comprehensive assessment.
- Provides a standardized approach to inspections.
- Facilitates documentation and tracking of safety-related information.