
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

COMPARISONS, MASKS, AND BOOLEAN LOGIC

Comparison Operators as ufuncs.

We saw that using +, -, *, /, and others on arrays leads to element-wise operations. NumPy also implements

comparison operators such as < (less than) and > (greater than) as element-wise ufuncs.

The result of these comparison operators is always an array with a Boolean data type.

All six of the standard comparison operations are available:

x = np.array([1, 2, 3, 4, 5])

x < 3 # less than

array([True, True, False, False, False], dtype=bool)

x > 3 # greater than

array([False, False, False, True, True], dtype=bool)

x <= 3 # less than or equal

array([True, True, True, False, False], dtype=bool)

x >= 3 # greater than or equal

array([False, False, True, True, True], dtype=bool)

x != 3 # not equal

array([True, True, False, True, True], dtype=bool)

x == 3 # equal

array([False, False, True, False, False], dtype=bool)

Operator Equivalent ufunc

== np.equal

!= np.not_equal

< np.less

<= np.less_equal

> np.greater

>= np.greater_equal

Just as in the case of arithmetic ufuncs, these will work on arrays of any size and shape. Here is a

two-dimensional example

rng = np.random.RandomState(0)

x = rng.randint(10, size=(3, 4))

x

array([[5, 0, 3, 3],

 [7, 9, 3, 5],

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

 [2, 4, 7, 6]])

The result is a Boolean array, and NumPy provides a number of straightforward patterns for

working with these Boolean results.

Example

np.sum((inches > 0.5) & (inches < 1))

inches > (0.5 & inches) < 1

np.sum(~((inches <= 0.5) | (inches >= 1)))

Boolean Arrays as Masks

A more powerful pattern is to use Boolean arrays as masks, to select particular subsets of the data

themselves. Returning to our x array from before, suppose we want an array of all values in the array that

are less than, say, 5

We can obtain a Boolean array for this condition easily, as we’ve already seen

Example

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

Masking operation

To select these values from the array, we can simply index on this Boolean array; this is known as a

masking operation.

x[x < 5]

array([0, 3, 3, 3, 2, 4])

What is returned is a one-dimensional array filled with all the values that meet this condition; in other

words, all the values in positions at which the mask array is True.

FANCY INDEXING

Fancy indexing is like the simple indexing we’ve already seen, but we pass arrays of indices in place

of single scalars. This allows us to very quickly access and modify complicated subsets of an array’s values.

Exploring Fancy Indexing

Fancy indexing is conceptually simple: it means passing an array of indices to access multiple array

elements at once.

Types of fancy indexing.

 Indexing / accessing more values

 Array of indices

 In multi-dimensional

 Standard indexing

Indexing / accessing more values

Suppose we want to access three different elements. We could do it like this:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

Array of indices

We can pass a single list or array of indices to obtain the same result.

ind = [3, 7, 4]

x[ind]

array([71, 86, 60])

In multi-dimensional

Fancy indexing also works in multiple dimensions. Consider the following array.

Standard indexing

Like with standard indexing, the first index refers to the row, and the second to the column.

row = np.array([0, 1, 2])

col = np.array([2, 1, 3])

X[row, col]

array ([2, 5, 11])

Combined Indexing

For even more powerful operations, fancy indexing can be combined with the other indexing schemes

we’ve seen.

Example array

print(X)

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]]

 Combine fancy and simple indices

X[2, [2, 0, 1]]

array([10, 8, 9])

 Combine fancy indexing with slicing

X[1:, [2, 0, 1]]

array([[6, 4, 5], [10, 8, 9]])

 Combine fancy indexing with masking

mask = np.array([1, 0, 1, 0], dtype=bool)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3352 - Foundations of Data Science

X[row[:, np.newaxis], mask]

array([[0, 2],

 [4, 6],

 [8, 10]])

Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can also be used to modify parts of an

array. Change some value in an array

Modify particular element by index

For example, imagine we have an array of indices and we’d like to set the corresponding items in an array

to some value.

