5.4. ANALYSIS OF RIGID FRAMES BY STIFFNESS MATRICES METHOD

5.4.1.NUMERICAL PROBLEMS ON RIGID FRAMES;

PROBLEM NO:01

Analysis the rigid portal frame ABCD shown in fig, by using Stiffness method.

Solution:

- Assigned Co-Ordinates:

- Fixed End Moments:
$\mathrm{MFBC}=-\mathrm{Wl} / 8=-30 \times 5 / 8=-13.75 \mathrm{kNm}$
$\mathrm{MFCB}=\mathrm{Wl} / 8=30 \times 5 / 8=13.75 \mathrm{kNm}$
$\mathrm{MFAB}=\mathrm{MFBA}=\mathrm{MFCD}=\mathrm{MFDC}=0$
- Fixed End Moments Diagrams:

$$
\mathrm{W}^{\mathrm{o}}=\left[\begin{array}{r}
-18.75 \\
18.75
\end{array}\right]
$$

- Formation of (A) Matrix:

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
A^{\mathrm{T}} & =\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

- Stiffness Matrix(K):

$$
\mathrm{K}=\mathrm{EI} \mathrm{~L}\left[\begin{array}{llllll}
4 & 2 & 0 & 0 & 0 & 0 \\
2 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 & 0 \\
0 & 0 & 2 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0 & 2 & 4
\end{array}\right]=\mathrm{EI}\left[\begin{array}{cccccc}
0.8 & 0.4 & 0 & 0 & 0 & 0 \\
0.4 & 0.8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.8 & 0.4 & 0 & 0 \\
0 & 0 & 0.4 & 0.8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.8 & 0.4 \\
0 & 0 & 0 & 0 & 0.8 & 0.4
\end{array}\right]
$$

- System Stiffness Matrix(J):

$$
\mathbf{J}=\mathbf{A}^{\mathbf{T}} \cdot \mathbf{K} \cdot \mathbf{A}
$$

$=\mathrm{EI}\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}0.8 & 0.4 & 0 & 0 & 0 & 0 \\ 0.4 & 0.8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.8 & 0.4 & 0 & 0 \\ 0 & 0 & 0.4 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.8 & 0.4 \\ 0 & 0 & 0 & 0 & 0.8 & 0.4\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right]$

$$
\begin{aligned}
J & =E I\left[\begin{array}{cc}
1.6 & 0.4 \\
0.4 & 1.6
\end{array}\right] \\
\mathrm{J}^{-1} & =\frac{1}{\mathrm{EI}}\left[\begin{array}{cc}
0.67 & -0.17 \\
0.17 & 0.67
\end{array}\right]
\end{aligned}
$$

- Displacement Matrix(Δ):

$$
\begin{aligned}
\Delta & =\mathbf{J}^{-1} \cdot \mathbf{W} \\
& =\mathbf{J}^{-1}\left[\mathbf{W}^{*}-\mathbf{W}^{\mathbf{0}}\right] \\
& =\frac{1}{\mathrm{EI}}\left[\begin{array}{rr}
0.67 & -0.17 \\
-0.17 & 0.67
\end{array}\right]\left[\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}-\left\{\begin{array}{r}
-18.75 \\
18.75
\end{array}\right\}\right] \\
\Delta & =\frac{1}{\mathrm{EI}}\left[\begin{array}{r}
15.75 \\
-15.75
\end{array}\right]
\end{aligned}
$$

- Element Force (P):

$$
\begin{gathered}
\mathbf{P}=\mathbf{K} \cdot \mathbf{A} \cdot \boldsymbol{\Delta} \\
=\frac{\mathrm{EI}}{\mathrm{EI}}\left[\begin{array}{cccccc}
0.8 & 0.4 & 0 & 0 & 0 & 0 \\
0.4 & 0.8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.8 & 0.4 & 0 & 0 \\
0 & 0 & 0.4 & 0.8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.8 & 0.4 \\
0 & 0 & 0 & 0 & 0.8 & 0.4
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
15.75 \\
-15.75
\end{array}\right] \\
\\
\mathrm{P}=\left[\begin{array}{c}
6.3 \\
12.6 \\
6.3 \\
-6.3 \\
-12.6 \\
-6.3
\end{array}\right]
\end{gathered}
$$

- Final Moments (M):

$$
\begin{gathered}
\mathbf{M}=\boldsymbol{\mu}+\mathbf{P} \\
=\left[\begin{array}{c}
0 \\
0 \\
-18.75 \\
18.75 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
6.3 \\
12.6 \\
6.3 \\
-6.3 \\
-12.6 \\
-6.3
\end{array}\right]=\left[\begin{array}{r}
6.3 \\
12.6 \\
-12.5 \\
12.5 \\
-12.6 \\
-6.3
\end{array}\right]
\end{gathered}
$$

PROBLEM NO:02

Analysis the portal rigid frame ABCD using stiffness method and find the support moments.

Solution:

- Assigned Co-Ordinates:

- Fixed End Moments:

$\mathrm{MFBC}=-\left[\mathrm{W} 1 / 8+\mathrm{Wl}^{2} / 12\right]=-\left[30 \times 4 / 8+30 \times 4^{2} / 12\right]=-55 \mathrm{kNm}$
$\mathrm{MFCB}=\left[\mathrm{Wl} / 8+\mathrm{Wl}^{2} / 12\right]=\left[30 \times 4 / 8+30 \times 4^{2} / 12\right]=55 \mathrm{kNm}$
$\mathrm{MFAB}=\mathrm{MFBA}=\mathrm{MFCD}=\mathrm{MFDC}=0$

- Fixed End Moments Diagrams:

- Formation of (A) Matrix:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
A^{T} & =\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

- Stiffness Matrix(K):
- System Stiffness Matrix(J):

$$
\mathbf{J}=\mathbf{A}^{\mathbf{T}} \cdot \mathbf{K} \cdot \mathbf{A}
$$

$$
\begin{aligned}
=\mathrm{EI}\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0.5 & 0 & 0 & 0 & 0 \\
0.5 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
\mathrm{J}=\mathrm{EI}\left[\begin{array}{cc}
2 & 0.5 \\
0.5 & 2
\end{array}\right] \\
\mathrm{J}^{-1}=\frac{1}{\mathrm{EI}}\left[\begin{array}{ccc}
0.53 & -0.13 \\
0.13 & 0.53
\end{array}\right]
\end{aligned}
$$

- Displacement Matrix(Δ):

$$
\begin{aligned}
\Delta & =\mathbf{J}^{-1} \cdot \mathbf{W} \\
& =\mathbf{J}^{-1}\left[\mathbf{W}^{*}-\mathbf{W}^{\mathbf{0}}\right] \\
& =\frac{1}{\mathrm{EI}}\left[\begin{array}{rr}
0.53 & -0.13 \\
-0.13 & 0.53
\end{array}\right]\left[\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}-\left\{\begin{array}{r}
-55 \\
55
\end{array}\right\}\right] \\
\Delta & =\frac{1}{\mathrm{EI}}\left[\begin{array}{r}
36.3 \\
-36.3
\end{array}\right]
\end{aligned}
$$

- Element Force (P):

$$
\begin{aligned}
\mathbf{P} & =\mathbf{K} \cdot \mathbf{A} \cdot \boldsymbol{\Delta} \\
& =\frac{\mathrm{EI}}{\mathrm{EI}}\left[\begin{array}{cccccc}
1 & 0.5 & 0 & 0 & 0 & 0 \\
0.5 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
36.3 \\
-36.3
\end{array}\right]
\end{aligned}
$$

$$
P=\left[\begin{array}{c}
18.15 \\
36.3 \\
18.15 \\
-18.15 \\
-36.3 \\
-18.15
\end{array}\right]
$$

- Final Moments (M):

$$
\begin{aligned}
& \mathbf{M}=\boldsymbol{\mu}+\mathbf{P} \\
&= {\left[\begin{array}{r}
0 \\
0 \\
-55 \\
55 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
18.15 \\
36.3 \\
18.15 \\
-18.15 \\
-36.3 \\
-18.15
\end{array}\right]=\left[\begin{array}{c}
18.15 \\
36.3 \\
-36.3 \\
36.45 \\
-36.3 \\
-18.15
\end{array}\right] }
\end{aligned}
$$

PROBLEM NO:03

A portal frame ABCD with supports A and D are fixed at same level carries a uniformly distributed load of 8 tons $/ \mathrm{m}$ on the span AB . Span $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=9 \mathrm{~m}$. EI is constant throughout. Analyse the frame by stiffness matrix method.

Solution:

- Assigned Co-Ordinates:

- Fixed End Moments:
$\mathrm{MFBC}=-\mathrm{Wl}^{2} / 12=-8 \times 9^{2} / 12=-54$ ton. m
$\mathrm{MFCB}=\mathrm{Wl}^{2} / 12=-8 \times 9^{2} / 12=54$ ton. m
$\mathrm{MFAB}=\mathrm{MFBA}=\mathrm{MFCD}=\mathrm{MFDC}=0$
- Fixed End Moments Diagrams:

- Formation of (A) Matrix:

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{lll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
\mathrm{A}^{T} & =\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

- Stiffness Matrix(K):

$$
\mathrm{K}=\begin{gathered}
\mathrm{EI} \\
\mathrm{~L} \\
\mathrm{~L}
\end{gathered} \mathrm{l}\left[\begin{array}{lllll}
4 & 2 & 0 & 0 & 0
\end{array}\right) 0 .\left[\begin{array}{cccccc}
0.44 & 0.22 & 0 & 0 & 0 & 0 \\
0.22 & 0.44 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 & 0 \\
0 & 0 & 2 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0 & 2 & 4
\end{array}\right]=\mathrm{EI}\left[\begin{array}{c}
0.44 \\
0.22 \\
0
\end{array} 0\right.
$$

- System Stiffness Matrix(J):

$$
\mathbf{J}=\mathbf{A}^{\mathrm{T}} \cdot \mathbf{K} \cdot \mathbf{A}
$$

$$
\begin{aligned}
&=\mathrm{EI}\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{cccccc}
0.44 & 0.22 & 0 & 0 & 0 & 0 \\
0.22 & 0.44 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.44 & 0.22 & 0 & 0 \\
0 & 0 & 0.22 & 0.44 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.44 & 0.22 \\
0 & 0 & 0 & 0 & 0.22 & 0.44
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
& \mathrm{J}=\mathrm{EI}\left[\begin{array}{ll}
0.88 & 0.22 \\
0.22 & 0.88
\end{array}\right] \\
& \mathrm{J}^{-1}=\frac{1}{\mathrm{EI}}\left[\begin{array}{cc}
1.212 & -0.303 \\
-0.303 & 1.212
\end{array}\right]
\end{aligned}
$$

- Displacement Matrix(4):

$$
\begin{aligned}
\Delta & =\mathbf{J}^{-1} \cdot \mathbf{W} \\
& =\mathbf{J}^{-1}\left[\mathbf{W}^{*}-\mathbf{W}^{\mathbf{0}}\right] \\
& =\frac{1}{\mathrm{EI}}\left[\begin{array}{rr}
1.212 & -0.303 \\
-0.303 & 1.212
\end{array}\right]\left[\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}-\left\{\begin{array}{r}
-54 \\
54
\end{array}\right\}\right] \\
\Delta & =\frac{1}{\mathrm{EI}}\left[\begin{array}{r}
81.81 \\
-81.81
\end{array}\right]
\end{aligned}
$$

- Element Force (P):

$$
\begin{aligned}
& \mathbf{P}=\mathbf{K} . \mathbf{A} . \Delta \\
& =\frac{\mathrm{EI}}{\mathrm{EI}}\left[\begin{array}{cccccc}
0.44 & 0.22 & 0 & 0 & 0 & 0 \\
0.22 & 0.44 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.44 & 0.22 & 0 & 0 \\
0 & 0 & 0.22 & 0.44 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.44 & 0.22 \\
0 & 0 & 0 & 0 & 0.22 & 0.44
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{r}
81.81 \\
-81.81
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.22 & 0 \\
0.44 & 0 \\
0.44 & 0.22 \\
0.22 & 0.44 \\
0 & 0.44 \\
0 & 0.22
\end{array}\right]\left[\begin{array}{r}
81.81 \\
-81.81
\end{array}\right] \\
& P=\left[\begin{array}{r}
18 \\
36 \\
18 \\
-18 \\
-36 \\
-18
\end{array}\right]
\end{aligned}
$$

- Final Moments (M):

$$
\begin{aligned}
& \mathbf{M}=\boldsymbol{\mu}+\mathbf{P} \\
& =\left[\begin{array}{r}
0 \\
0 \\
-54 \\
54 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{r}
18 \\
36 \\
18 \\
-18 \\
-36 \\
-18
\end{array}\right]=\left[\begin{array}{r}
18 \\
36 \\
-36 \\
36 \\
-36 \\
-18
\end{array}\right]
\end{aligned}
$$

