

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

2. FORMAL SYSTEM SPECIFICATION

Formal system specification in software engineering refers to the process of

precisely describing the behavior, properties, and requirements of a software system

using formal methods and mathematical notations. It aims to eliminate ambiguity,

clarify system requirements, and enable formal analysis and verification of system

properties.

Here are some key aspects of formal system specification:

Formal Methods:

 Formal methods are mathematical techniques used to specify, model, and reason

about software systems. They provide a rigorous and precise approach to system

specification, ensuring clarity and unambiguous representation. Common formal

methods used for system specification include Z notation, B method, and

Specification and Description Language (SDL).

Mathematical Notations:

Formal system specification often involves using mathematical notations to

express system requirements, constraints, and behaviors. These notations can

include predicate logic, set theory, algebraic expressions, temporal logic, and

process calculi, depending on the chosen formal method.

Language Constructs:

Formal specification languages provide constructs and syntax for expressing

system properties. For example, Z notation includes constructs for defining data

types, predicates, schema definitions, and invariants. These language constructs

allow for a systematic and structured representation of the system.

Requirements Capture:

Formal system specification helps in capturing and refining system

requirements. It enables the identification of inconsistencies, ambiguities, and gaps

in

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Requirements early in the development process. Formal methods facilitate the

translation of informal requirements into precise and unambiguous specifications.

Verification and Validation:

 Formal system specification enables formal analysis, verification, and validation

of system properties. Formal methods support the use of automated tools and

theorem provers to check the consistency, correctness, and completeness of system

specifications. This helps in identifying design flaws, detecting logical

inconsistencies, and verifying that the system meets its intended requirements.

Refinement:

Formal specification allows for stepwise refinement of system specifications.

System requirements can be progressively refined into more detailed specifications,

ensuring that the design and implementation faithfully adhere to the original

requirements.

Documentation:

Formal system specifications serve as a valuable source of documentation. They

provide a clear and unambiguous representation of system requirements, constraints,

and behavior, which aids in system understanding, maintenance, and future

enhancements.

Formal system specification plays a crucial role in software engineering by

enhancing the quality, reliability, and maintainability of software systems. It

supports rigorous analysis, verification, and validation, leading to more dependable

and trustworthy software designs.

3. FINITE STATE MACHINE

• A state machine is a software computation model. It’s just a model to solve a

complex application, and it comprises a finite number of states. Hence it is also

called a Finite State Machine. States are nothing but situations of your application

(different situations).

• Since states are finite, there is a finite number of transitions among the states.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

Transitions are triggered by the incidents or input events fed to the state

machine. An FSM is an event-driven reactive system.

• A state machine also produces an output. The output produced depends on the

current state of the state machine sometimes, and sometimes it also depends

on the input events fed to the state machine.

Benefits of using state machines:

• It is used to describe situations or scenarios of your application (Modelling the

lifecycle of a reactive object through interconnections of states.

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

• FSMs are helpful to model complex applications that involve lots of

decision-making, producing different outputs, and processing various events.

• State machines are visualized through state machine diagrams in the form

of state charts, which helps to communicate between non-developers and

developers.

• FSM makes it easier to visualize and implement the changes to the

behavior of the project.

• Complex application can be visualized as a collection of different states

processing a fixed set of events and producing a fixed set of outputs.

• Loose coupling: An application can be divided into multiple behaviors or

state machines, and each unit can be tested separately or could be reused in

other applications.

• Easy debugging and easy code maintenance.

• Scalable

• Narrow down the whole application completely to state-level complexity,

analyze and implement.

Different types of state machines:

1. Mealy machine

2. Moore machine

3. Harel state charts

4. UML state machines

Some of these state machines are used for software engineering, and some state

machines are still being used in digital electronics, VLSI design, etc.

Types of Finite State Machines

Mealy machines are a type of simple state machine where the next state is

determined by the current state and the given input.

The next state is determined by checking which input generates the next state

with the current state. Imagine a button that only works when you’re logged in.

https://fastbitlab.com/mealy-and-moore-machine/
https://fastbitlab.com/mealy-and-moore-machine/
https://fastbitlab.com/fsm-lecture-3-mealy-and-moore-state-transition-table/
https://fastbitlab.com/fsm-lecture-9-uml-simple-and-composite-states/

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

That button is a state machine with login as the current state.

The new state is determined by logging in. Once you’re logged in, the next state

is determined by the current state which is logged in.

Moore Machines

A Moore State Machine is a type of state machine for modeling systems with a

high degree of uncertainty. In these systems, predicting the exact sequence of

future events is difficult. As a result, it is difficult to determine the next event.

A Moore model captures this uncertainty by allowing the system to move from

one state to another based on the outcome of a random event.

A Moore model has many applications in both industry and academia. For

example, it can be used to predict when a system will fail or when certain events

will occur with a high probability (e.g., when there will be an earthquake).

It can also be used as part of an optimization algorithm when dealing with

uncertain inputs (e.g., produce only 1% more product than standard).

 In addition, Moore models are often used as rules for automatic control systems (e.g.,

medical equipment) that need to respond quickly and accurately without human intervention.

Turing Machine

The Turing Machine consists of an input tape (with symbols on it), an internal

tape (which corresponds to memory), and an output tape (which contains the

result).

A Turing Machine operates through a series of steps: it scans its input tape, reads

out one symbol at a time from its internal tape, and then applies this symbol

as a command (or decision) to its output tape. For example: “If you see ‘X’ on

the input tape, then print ‘Y’ on the output tape.”

The input tape can be considered a finite set of symbols, while the internal and

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

output tapes are infinite. The Turing Machine must read an entire symbol from its

internal tape before it can move its head to the next symbol on the input tape.

Once it has moved its head to the next symbol, it can read that symbol out of its

internal tape and then move to the next symbol on its input tape.

This process continues until no more input or output symbols are left in the

Turing Machine’s internal or external tapes (at which point, it stops).

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

State Machine Use Cases

State machines are helpful for a variety of purposes. They can be used to model the flow

of logic within a program, represent the states of a system, or for modeling the flow of

events in a business process.

There are many different types of state machines, ranging from simple to highly complex.

A few common use cases include:

Modeling Business Workflow Processes

State machines are ideal for modeling business workflows. This includes account setup

flows, order completion, or a hiring process.

These things have a beginning and an end and follow some sort of sequential order. State

machines are also great for modeling tasks that involve conditional logic.

Business Decision-Making

Companies pair FSMs with their data strategy to explore the cause and effect of business

scenarios to make informed business decisions.

Business scenarios are often complex and unpredictable. There are many possible

outcomes, and each one impacts the business differently.

A simulation allows you to try different business scenarios and see how each plays out.

You can then assess the risk and determine the best course of action.

https://www.adservio.fr/post/meaning-of-workflow-management-benefits-types
https://www.forbes.com/sites/forbesbusinesscouncil/2022/04/21/why-good-data-is-critical-to-making-informed-business-decisions/

 CCS356-OBJECT ORIENTED SOFTWARE ENGINEERING

ANUJA.R AP/CSE RCET

	2. FORMAL SYSTEM SPECIFICATION
	Here are some key aspects of formal system specification:
	3. FINITE STATE MACHINE
	Types of Finite State Machines
	Moore Machines
	Turing Machine
	State Machine Use Cases
	Modeling Business Workflow Processes
	Business Decision-Making

