1. Superposition Theorem

Statement: In linear, active, bilateral network current flowing through any component is the algebraic sum of currents due to individual sources taking one at a time, replacing remaining sources with their internal impedances.

Proof: Consider the network shown in fig(1), in which Z_1 , Z_2 , Z_3 are impedances and V_1 and V_2 are applied sources.

Let I_1 , I_2 be the mesh currents, writing mesh equations for fig(1).

$$(Z_1 + Z_3) I_1 - Z_3 I_2 = V_1$$
 -----(1)
- $Z_3 I_1 + (Z_2 + Z_3) I_2 = V_2$ -----(2)

Now keeping the source V_1 and replacing V_2 with its internal impedance. The modified ckt is shown in fig(2).

Let I_1' , I_2' be mesh currents, mesh equations for fig(2)

$$(Z_1 + Z_3)I'_1 - Z_3I'_2 = V_1$$
 -----(3)
- $Z_3 I'_1 + (Z_2 + Z_3)I'_2 = 0$ -----(4)

Consider the V2 and replace V1 with its internal impedance as shown in fig(3)

Let $I_1^{"}$, $I_2^{"}$ be the mesh currents, mesh equations for fig(3),

$$(Z_1 + Z_3) I_1'' - Z_3 I_2'' = 0$$
 -----(5)
- $Z_3 I_1'' + (Z_2 + Z_3) I_2'' = V_2$ -----(6)

Adding eq(3) & eq(5) and eq(4) & eq(6), we get

$$(Z_1 + Z_3)(\vec{I_1} + \vec{I_2}) - Z_3(\vec{I_2} + \vec{I_2}) = V_1$$
 -----(7)
- $Z_3(\vec{I_1} + \vec{I_1}) + (Z_2 + Z_3)(\vec{I_2} + \vec{I_2}) = V_2$ -----(8)

Comparing eq(1) & eq(7) and eq(2) & eq(8), we have

$$I_1 = (I'_1 + I''_2)$$

 $I_2 = (I'_2 + I''_2)$

It is clear from the above equations that the current flowing through any component is algebraic sum of currents due to individual sources taking on at a time. Hence **Superposition theorem** is proved.

2. THEVENIN'S THEOREM

Statement: Any linear, bilateral, active network connected between two terminal A, B can be replaced by a voltage source supplying voltage V_{TH} in series with an impedance Z_{TH} . Where V_{TH} known as Thevenin's voltage and is the open terminal voltage across A, B terminals. Z_{TH} is known as Thevenin's impedance and is measured across open terminals A, B by replacing all energy sources with their internal impedance.

Proof: Consider the network shown in fig(1), in which Z_1 , Z_2 and Z_3 are impedances, V is the applied voltage and Z_L is the load impedance.

Let I_1 , I_L be the mesh currents, mesh equations for fig(1)

$$(Z_1 + Z_3) I_1 - Z_3 I_L = V$$
 -----(1)
- $Z_3 I_1 + (Z_2 + Z_3 + Z_L) I_L = 0$ -----(2)

From eq(2), we have

$$Z_{3} I_{1} = (Z_{2} + Z_{3} + Z_{L}) I_{L}$$

$$I_{1} = \frac{(Z_{2} + Z_{3} + Z_{L}) I_{L}}{Z_{3}}$$
 (3)

Substituting I_1 value from eq(3) in eq(1) we get

$$(Z_{1} + Z_{3}) \underbrace{(Z_{2} + Z_{3} + Z_{L}) I_{L}}_{Z_{3}} - Z_{3} I_{L} = V$$

$$\underbrace{(Z_{1} + Z_{3})(Z_{2} + Z_{3} + Z_{L}) I_{L} - Z_{3}^{2} I_{L}}_{Z_{3}} = V$$

$$(Z_{1} + Z_{3})(Z_{2} + Z_{3} + Z_{L}) I_{L} - Z_{3}^{2} I_{L} = V Z_{3}$$

$$I_{L} \Big[(Z_{1} + Z_{3})(Z_{2} + Z_{3} + Z_{L}) - Z_{3}^{2} \Big] = V Z_{3}$$

$$I_{L} = \frac{V Z_{3}}{\Big[(Z_{1} + Z_{3})(Z_{2} + Z_{3} + Z_{L}) - Z_{3}^{2} \Big]} - (4)$$

$$I_{L} = \frac{V Z_{3}}{\Big[Z_{1} Z_{2} + Z_{1} Z_{3} + Z_{1} Z_{L} + Z_{3} Z_{2} + Z_{3}^{2} + Z_{3} Z_{L} - Z_{3}^{2} \Big]}$$

$$I_{L} = \frac{V Z_{3}}{\Big[Z_{1} Z_{2} + Z_{1} Z_{3} + Z_{1} Z_{L} + Z_{3} Z_{2} + Z_{3}^{2} + Z_{3} Z_{L} - Z_{3}^{2} \Big]}$$

$$I_{L} = \frac{V Z_{3}}{\Big[(Z_{1} Z_{2} + Z_{2} Z_{3} + Z_{3} Z_{1}) + Z_{1} (Z_{1} + Z_{3})} - (5)$$

Thevenin's Voltage (V_{Th})

To measure Thevenin's voltage make the terminals A, B open by removing the load impedance connected between them. The modified circuit diagram is shown in fig(2).

voltage across terminals AB (V_{TH}) = voltage across Z₃

$$V_{TH} = I X Z_3 \qquad ----- (6)$$

But from fig(2)

$$I = \frac{V}{Z_1 + Z_3}$$

Substituting I value in eq(6) we get

$$V_{TH} = \frac{VZ_3}{Z_1 + Z_3}$$
 (7)

Thevenin's Impedance (Z_{TH})

Thevenin's impedance is measured across open terminals AB by replacing all energy sources with their internal impedances. The modified circuit diagram is shown in fig(3).

$$\begin{split} Z_{TH} &= (\ Z_1 \parallel Z_3) + Z_2 \\ Z_{TH} &= \frac{Z_1 Z_3}{Z_1 + Z_3} + Z_2 \\ Z_{TH} &= \frac{Z_1 Z_3 + Z_2 (\ Z_1 + Z_3)}{Z_1 + Z_3} \\ Z_{TH} &= \frac{Z_1 Z_2 + Z_2 Z_3 + Z_3 Z_1}{Z_1 + Z_3} \end{split} \tag{8}$$

Thevenin's Equivalent Circuit

Thevenin's equivalent circuit can be constructed by connecting voltage source supplying voltage V_{TH} in series with an impedance Z_{TH} as shown in fig.(4). Finally connect the load impedance which was removed from the circuit.

The current in the Thevenin's equivalent circuit is given by $I' = \frac{V_{TH}}{Z_{TH} + Z_{I}} \qquad -----(9)$

Substituting V_{TH} and Z_{TH} values in eq (9), we get

$$I'_{L} = \frac{\frac{VZ_{3}}{Z_{1} + Z_{3}}}{\frac{(Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{3}Z_{1})}{(Z_{1} + Z_{3})} + Z_{L}}$$

$$I'_{L} = \frac{\frac{VZ_{3}}{Z_{1} + Z_{3}}}{\frac{(Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{3}Z_{1}) + Z_{L}(Z_{1} + Z_{3})}{(Z_{1} + Z_{3})}}$$

$$I'_{L} = \frac{VZ_{3}}{(Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{3}Z_{1}) + Z_{L}(Z_{1} + Z_{3})} - (10)$$

Comparing eq(5) & eq(10), we get

$$I_L = I_L'$$

That is the current flowing through load resistor in a given circuit is equal to the current flowing through the load resistor in Thevenin's equivalent circuit. Hence Thevenin's theorem is proved.