ROHININ COLLEGE OF ENGINEERING AND TECHNOLOGY

 Approved by AICTE \& Affliated to anna university Accredited with A^{+}grade by NAAC DEPARTMENT OF MECHANICAL ENGINEERINGNAME OF THE SUBJECT: ENGINEERING MECHANICS SUBJECT CODE : ME3351
REGULATION 2021

UNIT II: STATICS OF RIGID BODIES IN TWO DIMENSIONAL

UNIT II

Statics of Rigid bodies in Two Dimensional

Moment of force:

Moment of force is defined as the product of the force and perpendicular distance of the line of the force from the point.

Moment $=$ Force \times perpendicular distance.

$$
M o=F \times d N . m
$$

Varignon's Theorem:

The algebraic sum of the moment of any number of force about any point in their plane is equal to the moment of their resultant about the same point.
$F 1 \times d 1+F 2 \times d 2+F 3 \times d 3=R \times d$

Find the resultant force for the parallel force System shown in fig.

Resultant force ' R '

$$
\begin{aligned}
& R=24+36 \\
& R=60 N
\end{aligned}
$$

Location of resultant force:
Algebric sum of moment of all force about a
$\sum M_{A}=-36 \times 12$
$\sum M_{A}=-432$ N.m
$\sum M_{A}=432$ N.m(clockwise)
By virginal theorem
$\sum M_{A}=R \times x$
$+432=+60 \times x$
$x=\frac{+432}{+60}$
$x=7.2 \mathrm{~cm}$
2. Four parallel forces of magnitude $10 \mathrm{~N}, 50 \mathrm{~N}, 20 \mathrm{~N}$ and 35 N as shown in fig. Determine the magnitude and direction of the resultant. Find the distance of the resultant from point A.

Solution:-
Magnitude of resultant:-
$R=10-15-20+35$
$R=+10 N$
Locating of the resultant
$\sum M_{A}=R \times x$
$\sum M_{A}=(15 \times 1)+(20 \times 3)+(-35 \times 4)$
$\sum M_{A}=-65$ N.m
$\sum M_{A}=R \times x$
$+65=10 \times x$
$x=(+65) /(+10)$
$x=6.5 \mathrm{~m}$

1. A system of forces acts on a weightless beam as shown I fig. Find the magnitude of the resultant and the location of the point where the resultant met the beam.

Given:

$$
\begin{aligned}
\text { Load at } K & =5 \text { KN at } 60^{\circ} \\
K & =6 K N \text { at } 45^{\circ} \\
M & =4 K N \text { at } 45^{\circ} \\
N & =8 K N \text { at } 60^{\circ}
\end{aligned}
$$

To find:
Resultant force \& location
Soln:
Resultant $\mathrm{R}=\sqrt{(\Sigma F H)^{2}+\left(\sum F V\right)^{2}}$
$\Sigma F_{H}=0 \stackrel{+-}{\rightarrow}$

$$
=-5 \cos 60+6 \cos 45+4 \cos 45+8 \cos 60
$$

$$
\Sigma F_{H}=8.57 K N
$$

$$
\Sigma F_{v}=0 \uparrow+\downarrow-
$$

$=-5 \sin 60+6 \sin 45+4 \sin 45+8 \sin 60$
$\sum F_{v}=-12.67 K N$
$\mathrm{R}=\sqrt{\left(\sum F H\right)^{2}+\left(\sum F V\right)^{2}}$
$\mathrm{R}=\sqrt{(8.57)^{2}+\sum(12.67)^{2}}$
$R=15.3 \mathrm{Kn}$
Inclination of the resultant $\alpha=\tan ^{-1}\left(\frac{\Sigma_{F_{V}}}{{\sum F_{H}}}\right)$
$\alpha=\tan ^{-1}\left(\frac{12.67}{8.57}\right)$
$\alpha=55.92^{\circ}$
To locate the resultant:
$\sum M_{k}=0 \downarrow+\uparrow-$
$\sum M_{k}=0+[+\sin 45 \times 2]+[-4 \sin 45 \times 3.5]+[+8 \sin 60 \times 5.5]$
$\sum M_{k}=+36.69$ KN.m (clockwise)
By varigon's Theorem
$\sum M_{k}=R \times x$
$+36.69=15.3 \times x$
$x=\frac{+36.69}{15.3}$
$x=2.4 m$

Problem: 1

A coplanar parallel force system consisting of three forces acts on a rigid bar AB as shown fig. below
a) Determine the simplest equivalent action for the force system.
b. If an additional force of 10 kn acts along the bar A to what be simplest equivalent action.

soln:
(a) simplest Equivalent force:

Sum of Horizontal force $\sum F_{\mathrm{H}}=0$
$\sum F H=0$
Sum of vertical force $\quad \sum F V=0$
$\sum F V=20+40-30=-10 \mathrm{KN}$
Magnitude of Resulatant Force $=\mathrm{R}$

$$
\begin{aligned}
& R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.} \\
& =\sqrt{0^{2}+(-10)^{2}} \\
& R=\sqrt{100} \\
& R==10 \mathrm{~N}
\end{aligned}
$$

Line of Action:-
Let the resultant force at distance ' X ' From the line of action 20KN
By using varigon's theorem
$\sum M_{c}=R \times x$
$\sum M_{c}=(-40 \times 3)+(30 \times 5)=120+150$
$\sum M_{c}=+30 \mathrm{Nm}$

$$
\begin{aligned}
& \sum M_{c}=30 N . m c . w \\
& 30=R \times x \rightarrow 30=10 \times x \\
& X=\frac{30}{10} \\
& x=3 m \\
& \frac{c^{3 n}}{A} \underbrace{}_{R=10 \mathrm{NW}}
\end{aligned}
$$

b) With additional force of 10 KN from Ato B

Sum of Horizontal force $\sum F_{H}=0$
$\sum F_{H}=10 K N$
Sum of horizontal force $\sum F_{v}=0$
$\sum F_{v}=-20+20-30$
$\sum F_{v}=-10 K N$
Resultant Force ' R ' $R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$
$R=\sqrt{(10)^{2}+[-10]^{2}}$

$$
\begin{aligned}
& R=\sqrt{100+100}=\sqrt{200} \\
& R=14.14 K N
\end{aligned}
$$

Location
$\sum M_{c}=\sum F_{V}$
$\sum M_{c}=(-40 \times 3)+(30 \times 5)=-30 k N . M$
$\sum M_{c}=30$ KN. $M \quad$ clockwise
$30=10 \times x$
$x=13 m$
Location
$\theta=\tan ^{-1}\left(\frac{\sum_{F_{v}}}{\sum_{F_{v}}}\right)=\tan ^{-1}\left(\frac{10}{10}\right)$
$\theta=45^{\circ}$

$$
-80 P=-4628.2
$$

$P=\frac{4628.2}{80}$
$P=61.60 N$
ii) Magnitude of the Resultant force:

Resultant $R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)\right.\right.}$
$\sum F_{H}=-61.60-100 \cos 60$
$\sum F_{H}=-111.60 N$
$\sum F_{v}=100 \sin 60$
$\sum F_{v}=86.6 N$
$R=\sqrt{[-111.60]^{2}+[86.6]^{2}}$
$R=141.26 N$
iii) Point of Application

By Varigon's theorem
$\Sigma M_{o}=R \times x$
$\Sigma M_{o}=61.60 \times 40+[-100 \sin 60 \times 80]=0$
ΣM_{o} 2464-6928
$\sum M_{O}=-4464.2$ Counts clocks wise
$\sum M_{O}=4464$ Clockwise
$\Sigma M_{o}=R \times x$
$4464.2=141.26 \times x$
$X=31.60 \mathrm{~mm}$

6 . A 200 KN vertical force is applied to the end of a lever which attached a shaft as B as shown in Fig Below. Determine the(i) magnitude of horizontal force (ii) The smallest force applied at which creates the same moment about B(iii) How far from the end B, at 400 KN Vertical force must to create the same moment about B (iv) Replace the given system of force at B.

Vertical load at point $A=200 \mathrm{KN}$
Length of bar $L=3 \mathrm{~m}$
Angle $=40^{\circ}$
Soln:
(i) The magnitude of horizontal force applied at ' A " which create same moment about 'B'

Take moment about 'B'

$$
\begin{array}{lll}
M_{0}=+200 \times B C & \cos \theta=\frac{B C}{3} \\
M_{O}=+200 \times 2.29 & \cos \theta=\frac{B C}{3} \\
M_{O}=+459.62 \text { KN.M } & \rightarrow \mathrm{F} & B C=2.29 \mathrm{~m}
\end{array}
$$

$$
M D=459.62 \mathrm{KN} . \mathrm{m}
$$

$\sin \theta=\frac{A C}{A B}$
Take moment About ' o ' horizontal force
$\sin \theta=\frac{A C}{A B}$
act forwards right
$M_{D}=F \times A C$
$\sin 40=\frac{A C}{3}$
$459.62=F \times 1.92$
$F=\frac{459.62}{1.92} \frac{\mathrm{KN} . \mathrm{m}}{\mathrm{m}}$
$F=238.34 K N$
ii) The smallest force applied at which create the same moment about ' B ' moment About $B=459.62$ KN.m
$M_{B}=F \times 3$

$459.62=F \times 3$
$F=\frac{459.62}{3}$
$F=153.20 \mathrm{KN}$
(iii) How far from the end B , a 400 KN vertical force must act to create the same moment about B.

Let 400KN Vertical force act at a distance of ' x ' A to have same moment - 459.62 KN.m clockwise

To have clockwise moment 400 N Vertical force on the right side of A

$$
\begin{aligned}
& \text { Moment }=-459.62 \mathrm{KN} . \mathrm{m} \\
& -400 \times x=-459.62 \\
& x=(-459.62) /(-400) \\
& x=1.149 \mathrm{~m}
\end{aligned}
$$

iv) Replace the given system of Force at B

$$
\text { Downward load }=200 \mathrm{KN}
$$

Moment at $B=459.63 \mathrm{KN} . \mathrm{m}$
7. Determine the resultant of The calendar non concurrent force system shown in fig. below. Calculate its mangnitute and direction and locate its position with respect to the sides AB and AD

Resultant force
$R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}$
$\sum F_{H}=0_{+} \longrightarrow \quad \longleftarrow-F_{H}=F \cos \theta$
$\Sigma F_{H}=18 \cos 45+36 \cos 60-18 \cos 36^{\circ} 52^{\prime}-58+58$
$\Sigma F_{H}=16.32 \mathrm{KN}$
$\sum F_{V}=0+\uparrow \quad \downarrow$
$\Sigma F_{v}=18 \sin 45-90+36 \sin 60^{\circ}+18 \sin 36^{\circ} 52^{\prime}=0$
$\sum F_{V}=-35.26 K N$
$R=\sqrt{\left(\sum\left(F_{H}\right)^{2}+\left(\sum\left(F_{V}\right)^{2}\right.\right.}=\sqrt{(16.32)^{2}+(-35.26)^{2}}$
$R=38.88 K N$
Direction:-
$\theta=\tan ^{-1}\left(\frac{\Sigma_{F V}}{\Sigma_{F H}}\right)=\tan ^{-1}\left(\frac{-35.26}{16.32}\right)$
$\theta=65^{\circ} 9^{\prime}$
Location:
By varignon's theorem

$$
\begin{aligned}
& \Sigma M_{A}=R \times x(\text { or }) \Sigma M_{A}=\Sigma F_{H} \times y \text { or } \Sigma F_{V} \times x \\
& \Sigma M_{A}=(+90 \times 3)+(36 \cos 60 \times 5)+(-36 \sin 60 \times 3) \\
& \quad+\left(-18 \cos 36^{\circ} 52^{\prime} \times 5\right)+(+58 \times 1.25)+(-58 \times 3.75)=0
\end{aligned}
$$

$\sum M_{A}=+49.46$ KN. M (clockwise)
$\sum M_{A}=49.46$ (clockwise)
$\Sigma M_{A}=\Sigma F_{V} \times x$
$49.46=35.26 \times x$
$x=1.39 \mathrm{~m}$
$\sum M_{A}=\sum F_{H} \times y$
$49.46=16.32 \times y$
$y=3.03$

8. A system of four forces $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and s of magnitude $5 \mathrm{KN}, 8 \mathrm{KN}, 6 \mathrm{KN}$ And 4 KN respectively acting on a body are shown in rectangular coordinates. As shown in fig find the moment of the forces about the origin O . also find the resultant moment of the forces about O . The distance are in meters.

Given:
Load on $P=5 \mathrm{KN}$
Load on $Q=3 K N$
Load on $R=6 \mathrm{KN}$
Load on $S=4 K N$
To Find:

1. moment of Forces
2. Resultant

Soln:-
Free body diagram

Moment of P

Moment of force ' P ' about the orgin, M_{P}
$M_{p}=5 \times 0$

$$
M_{p}=0
$$

Moment of Q
Moment of force ' Q ' about the orgin, M_{Q}
$M_{Q}=(8 \sin 45 \times 6)+(-8 \cos 45 \times 10)$
$M_{Q}=-22.64 K N . m$
$M_{Q}=+2.64 K N C . W$
Moment of R
Moment of force R about the orgin M_{R}
$M_{R}=-75.96$ KN..m
$M_{R}=75.96 \mathrm{c} . \mathrm{w}$
Moment of S
Moment of force s about the Orgin ' Ms '
$M_{s}=(4 \cos \times 7)+(4 \sin 70 \times 9)$
$M_{s}=43.40 \mathrm{KN} . \mathrm{m}$

