
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

MODEL-DRIVEN TEST DESIGN

The methodology is also known as model-driven software development (MDSD), model-driven

engineering (MDE) and model-driven architecture (MDA). The MDD approach focuses on the

construction of a software model. The model is a diagram that specifies how the software system

should work before the code is generated.

What is Model-Driven Test Design?

MDTD is built on the idea that designers will become more effective and efficient if they can

raise the level of abstraction. This approach breaks down the testing into a series of small tasks

that simplify test generation. Then test designers isolate their tasks and work at a higher level of

abstraction by using mathematical engineering structures to design test values independently of

the details of the software or design artifacts, test automation, and Test Execution.

Different phases in MDTD

MDTD can be done in 4 different phases. Each type of activity requires different skills,

background knowledge, education, and training.It is better to use different sets of people depend

on the situation.

1. Test Design — This can be done in either Criteria-Based where Design test values satisfy

coverage criteria or other engineering goals or in Human-Based where Design test values

based on domain knowledge of the program and human knowledge of testing which is

comparatively harder. This the most technical part of the MDTD process better to use

experienced developers in this phase.

2. Test Automation — This involves embedding test values to scripts. Test cases are

defined based on the test requirements. Test values are chosen such that we can cover a

larger part of the application with fewer test cases. We don’t need that much domain

knowledge in this phase, however, we need to use technically skilled people.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

3. Test Execution — The test engineer will run tests and records the results in this activity.

Unlike the previous activities, test execution not required a high skill set such as technical

knowledge, logical thinking, or domain knowledge. Since we consider this phase

comparatively low risk, we can assign junior intern engineers to execute the process. But

we should focus on monitoring, log collecting activities based on automation tools.

4. Test Evaluation — The process of evaluating the results and reporting to developers.

This phase is comparatively harder and we expected to have knowledge in the domain,

testing, and User interfaces, and psychology

2.5.2 TEST AUTOMATION

The final result of test design is input values for the software. Test automation is the process of

embedding test values into executable scripts. Note that automated tool support for test design is

not considered to be test automation. This is necessary for efficient and frequent execution of

tests. The programming difficulty varies greatly by the software under test (SUT). Some tests can

be automated with basic programming skills, whereas if the software has low controllability or

observability (for example, with embedded, real-time, or web software), test automation will

require more knowledge and problem-solving skills. The test automator will need to add

additional software to access the hardware, simulate conditions, or otherwise control the

environment. However, many domain experts using human-based testing do not have

programming skills. And many criteria-based test design experts find test automation boring. If a

test manager asks a domain expert to automate tests, the expert is likely to resist and do poorly; if

a test manager asks a criteria-based test designer to automate tests, the designer is quite likely to

go looking for a development job.

 2.5.3 TEST EXECUTION

 Test execution is the process of running tests on the software and recording the results. This

requires basic computer skills and can often be assigned to interns or employees with little

technical background. If all tests are automated, this is trivial. However, few organizations have

managed to achieve 100% test automation. If tests must be run by hand, this becomes the most

time-consuming testing task. Hand-executed tests require the tester to be meticulous with

bookkeeping. Asking a good test designer to hand execute tests not only wastes a valuable (and

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

possibly highly paid) resource, the test designer will view it as a very tedious job and will soon

look for other work.

 2.5.4 TEST EVALUATION

Test evaluation is the process of evaluating the results of testing and reporting to developers.

This is much harder than it may seem, especially reporting the results to developers. Evaluating

the results of tests requires knowledge of the domain, testing, user interfaces, and psychology.

The knowledge required is very much the same as for human-based test designers. If tests are

well-automated, then most test evaluation can (and should) be embedded in the test scripts.

However, when automation is incomplete or when correct output cannot neatly be encoded in

assertions, this task gets more complicated. Typical CS or software engineering majors will not

enjoy this job, but to the right person, this is intellectually stimulating, rewarding, and

challenging.

2.5.5 TEST PERSONNEL AND ABSTRACTION

These four tasks focus on designing, implementing and running the tests. Of course, they do not

cover all aspects of testing. This categorization omits important tasks like test management,

maintenance, and documentation, among others. We focus on these because they are essential to

developing test values. A challenge to using criteria-based test design is the amount and type of

knowledge needed. Many organizations have a shortage of highly technical test engineers. Few

universities teach test criteria to undergraduates and many graduate classes focus on theory, supporting

research rather than practical application. However, the good news is that with a well-planned division of

labor, a single criteria-based test designer can support a fairly large number of test automators, executors

and evaluators. The model-driven test design process explicitly supports this division of labor. This

process is illustrated in Figure 2.4, which shows test design activities above the line and other test

activities below.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

Figure 2.4. Model-driven test design.

The MDTD lets test designers “raise their level of abstraction ” so that a small subset of testers

can do the mathematical aspects of designing and developing tests. This is analogous to

construction design, where one engineer creates a design that is followed by many carpenters,

plumbers, and electricians. The traditional testers and programmers can then do their parts:

finding values, automating the tests, running tests, and evaluating them. This supports the truism

that “testers ain’t mathematicians.” The starting point in Figure 2.4 is a software artifact. This

could be program source, a UML diagram, natural language requirements, or even a user manual.

A criteria-based test designer uses that artifact to create an abstract model of the software in the

form of an input domain, a graph, logic expressions, or a syntax description. Then a coverage

criterion is applied to create test requirements. A human-based test designer uses the artifact to

consider likely problems in the software, then creates requirements to test for those problems.

These requirements are sometimes refined into a more specific form, called the test specification.

For example, if edge coverage is being used, a test requirement specifies which edge in a graph

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

must be covered. A refined test specification would be a complete path through the graph. Once

the test requirements are refined, input values that satisfy the requirements must be defined. This

brings the process down from the design abstraction level to the implementation abstraction

level. These are analogous to the abstract and concrete tests in the model-based testing literature.

The input values are augmented with other values needed to run the tests (including values to

reach the point in the software being tested, to display output, and to terminate the program). The

test cases are then automated into test scripts (when feasible and practical), run on the software

to produce results, and results are evaluated. It is important that results from automation and

execution be used to feed back into test design, resulting in additional or modified tests. This

process has two major benefits. First, it provides a clean separation of tasks between test design,

automation, execution and evaluation. Second, raising our abstraction level makes test design

much easier. Instead of designing tests for a messy implementation or complicated design model,

we design at an elegant mathematical level of abstraction. This is exactly how algebra and

calculus has been used in traditional engineering for decades.

TEST CASE ORGANIZATION AND TRACKING
A Test Case is a set of actions executed to verify a particular feature or functionality of your

software application. A Test Case contains test steps, test data, precondition, postcondition

developed for specific test scenario to verify any requirement. The test case includes specific

variables or conditions, using which a testing engineer can compare expected and actual results

to determine whether a software product is functioning as per the requirements of the customer.

Test Scenario Vs Test Case

Test scenarios are rather vague and cover a wide range of possibilities. Testing is all about being

very specific.

For a Test Scenario: Check Login Functionality there many possible test cases are:

 Test Case 1: Check results on entering valid User Id & Password

 Test Case 2: Check results on entering Invalid User ID & Password

 Test Case 3: Check response when a User ID is Empty & Login Button is pressed, and

many more

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

This is nothing but a Test Case.

The format of Standard Test Cases
Below is a format of a standard login Test cases example.

Test
Case
ID

Test Case
Description Test Steps Test Data Expected

Results
Actual
Results

P
a
s
s
/
F
a
i
l

TU01
Check Customer
Login with valid
Data

1. Go to
site http://demo.guru99
.com

2. Enter UserId
3. Enter Password
4. Click Submit

Userid = guru99
Password =
pass99

User
should
Login into
an
application

As Expected

P
a
s
s

TU02
Check Customer
Login with invalid
Data

1. Go to
site http://demo.guru99
.com

2. Enter UserId
3. Enter Password
4. Click Submit

Userid = guru99
Password =
glass99

User
should not
Login into
an
application

As Expected

P
a
s
s

This entire table may be created in Word, Excel or any other Test
management tool. That’s all to Test Case Design

How to Write Test Cases in Manual Testing
Let’s create a Test Case for the scenario: Check Login Functionality

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

Step 1) A simple test case to explain the scenario would be

Test Case # Test Case Description

1 Check response when valid email and password is entered

Step 2) Test the Data.
In order to execute the test case, you would need Test Data. Adding it below

Test Case # Test Case Description Test Data

1 Check response when valid email and password is entered Email: mary99@email.com
Password: lNf9^Oti7^2h

Identifying test data can be time-consuming and may sometimes require creating test data afresh.
The reason it needs to be documented.

Step 3) Perform actions.
In order to execute a test case, a tester needs to perform a specific set of actions on the AUT.
This is documented as below:

Test
Case

#
Test Case Description Test Steps Test Data

1 Check response when valid email and password is
entered

1) Enter Email Address

2) Enter Password

3) Click Sign in

Email:
guru99@email.com

Password: lNf9^Oti7^2h

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

Many times the Test Steps are not simple as above, hence they need documentation. Also, the

author of the test case may leave the organization or go on a vacation or is sick and off duty or is

very busy with other critical tasks. A recently hire may be asked to execute the test case.

Documented steps will help him and also facilitate reviews by other stakeholders.

Step 4) Check behavior of the AUT.
The goal of test cases in software testing is to check behavior of the AUT for an expected result.

This needs to be documented as below

Test Case
Test Case Description Test Data Expected

Result

1 Check response when valid email and password is
entered

Email:
guru99@email.com
Password: lNf9^Oti7^2h

Login
should be
successful

During test execution time, the tester will check expected results against actual results and assign
a pass or fail status

Test
Case # Test Case Description Test Data Expected Result Actual

Result Pass/Fail

1 Check response when valid
email and password is entered

Email: guru@email.com
Password: lNf9^Oti7^2h

Login should be
successful

Login
was
successful

Pass

Step 5) That apart your test case -may have a field like,

Pre – Condition which specifies things that must be in place before the test can run. For our test

case, a pre-condition would be to have a browser installed to have access to the site under test. A

test case may also include Post – Conditions which specifies anything that applies after the test

case completes. For our test case, a post-condition would be time & date of login is stored in the

database

BEST PRACTICE FOR WRITING GOOD TEST CASE.

Test Case Best Practice

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

1. Test Cases need to be simple and transparent:

Create test cases that are as simple as possible. They must be clear and concise as the author of

the test case may not execute them.

Use assertive language like go to the home page, enter data, click on this and so on. This makes

the understanding the test steps easy and tests execution faster.

2. Create Test Case with End User in Mind

The ultimate goal of any software project is to create test cases that meet customer requirements

and is easy to use and operate. A tester must create test cases keeping in mind the end user

perspective

3. Avoid test case repetition.

Do not repeat test cases. If a test case is needed for executing some other test case, call the test

case by its test case id in the pre-condition column

4. Do not Assume

Do not assume functionality and features of your software application while preparing test case.

Stick to the Specification Documents.

5. Ensure 100% Coverage

Make sure you write test cases to check all software requirements mentioned in the specification

document. Use Traceability Matrix to ensure no functions/conditions is left untested.

6. Test Cases must be identifiable.

Name the test case id such that they are identified easily while tracking defects or identifying a
software requirement at a later stage.

7. Implement Testing Techniques

It’s not possible to check every possible condition in your software application. Software Testing
techniques help you select a few test cases with the maximum possibility of finding a defect.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

 Boundary Value Analysis (BVA): As the name suggests it’s the technique that defines

the testing of boundaries for a specified range of values.

 Equivalence Partition (EP): This technique partitions the range into equal parts/groups

that tend to have the same behavior.

 State Transition Technique: This method is used when software behavior changes from

one state to another following particular action.

 Error Guessing Technique: This is guessing/anticipating the error that may arise while

doing manual testing. This is not a formal method and takes advantages of a tester’s

experience with the application

8. Self-cleaning

The test case you create must return the Test Environment to the pre-test state and should not
render the test environment unusable. This is especially true for configuration testing.

9. Repeatable and self-standing

The test case should generate the same results every time no matter who tests it

10. Peer Review.

After creating test cases, get them reviewed by your colleagues. Your peers can uncover defects
in your test case design, which you may easily miss.

While drafting a test case to include the following information

 The description of what requirement is being tested

 The explanation of how the system will be tested

 The test setup like a version of an application under test, software, data files, operating

system, hardware, security access, physical or logical date, time of day, prerequisites

such as other tests and any other setup information pertinent to the requirements being

tested

 Inputs and outputs or actions and expected results

 Any proofs or attachments

 Use active case language

 Test Case should not be more than 15 steps

 An automated test script is commented with inputs, purpose and expected results

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366 OFTWARE TESTING AND AUTOMATION

 The setup offers an alternative to pre-requisite tests

 With other tests, it should be an incorrect business scenario order

TEST CASE MANAGEMENT TOOLS

Test management tools are the automation tools that help to manage and maintain the Test Cases.

Main Features of a test case management tool are

1. For documenting Test Cases: With tools, you can expedite Test Case creation with use

of templates

2. Execute the Test Case and Record the results: Test Case can be executed through the

tools and results obtained can be easily recorded.

3. Automate the Defect Tracking: Failed tests are automatically linked to the bug tracker,

which in turn can be assigned to the developers and can be tracked by email notifications.

 Traceability: Requirements, Test cases, Execution of Test cases are all interlinked

through the tools, and each case can be traced to each other to check test coverage.

Protecting Test Cases: Test cases should be reusable and should be protected from

being lost or corrupted due to poor version control. Test Case Management Tools offer

features like

 Naming and numbering conventions

 Versioning

 Read-only storage

 Controlled access

 Off-site backup

