Paths, Reachability and Connectedness:

A path is a graph is a sequence $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$ of vertices each adjacent to the next. In other words, starting with the vertex v_{1}, one can travel along edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots$ and reach the vertex v_{k}.

Length of the path:

The number of edges appearing in the sequence of a path is called the length of path.

Cycle or Circuit:

A path which originates and ends in the same node is called a cycle of circuit.
A path is said to be simple if all the edges in the path are distinct.
A path in which all the vertices are traversed only once is called an elementary path.

Connected Graph:

An directed graph is said to be connected if any pair of nodes are reachable from one another. That is, there is a path between any pair of nodes.

Disconnected graph:

A graph which is not connected is called disconnected graph.

Theorem: 1

If a graph has \boldsymbol{n} vertices and a vertex \boldsymbol{v} is connected to a vertex \boldsymbol{w}, then there exists a path from v to w of length not more than $(n-1)$.

Proof:

Let $v, u_{1}, u_{2}, \ldots, u_{m-1}, w$ be a path in G from v to w.

By definition pf path, the vertices $v, u_{1}, u_{2}, \ldots, u_{m-1}$ and w all are distinct.

As G, contains only " n " vertices, it follows that $m+1 \leq n$

Hence the proof.

Theorem: 2

Prove that a simple graph with n vertices must be connected if it has more than $\frac{(n-1)(n-2)}{2}$ edges.

Proof:

$$
\Rightarrow m \leq n-1
$$

Let G be a simple graph with n vertices and more than $\frac{(n-1)(n-2)}{2}$ edges.

Suppose if G is not connected, then G must have atleast two components. Let it be G_{1} and G_{2}.

Let V_{1} be the vertex set of G_{1} with $\left|V_{1}\right|=m$. If V_{2} is the vertex set of G_{2}, then $\left|V_{2}\right|=n-m$.

Then (i) $1 \leq m \leq n-1$
(ii) There is no edge joining a vertex of V_{1} and a vertex of V_{2}.
(iii) $\left|V_{2}\right|=n-m \geq 1$

Now, $|E(G)|=\left|E\left(G_{1} \cup G_{2}\right)\right|$

$$
=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|
$$

$$
\begin{aligned}
& \leq \frac{m(m-1)}{2}+\frac{(n-m)(n-m-1)}{2}= \\
& =\frac{1}{2}\left[m^{2}-m+n(n-m-1)-m(n-m-1)\right]
\end{aligned}
$$

$$
=\frac{1}{2}\left[n(n-1)-n m-m(n-m-1)+m^{2}-m\right]
$$

$$
=\frac{1}{2}\left[(n-1)(n-2)+2(n-1)-2 n m+m^{2}+m+m^{2}-m\right]
$$

Adding and Subtracting $2 n-2$ 0pilnizi 02

$$
\begin{aligned}
& =\frac{1}{2}\left[(n-1)(n-2)+2 n-2-2 n m+2 m^{2}\right] \\
& =\frac{1}{2}\left[(n-1)(n-2)+2 n(1-m)+2\left(m^{2}-1\right)\right] \\
& =\frac{1}{2}[(n-1)(n-2)-2 n(m-1)+2(m-1)(m+1)]
\end{aligned}
$$

$$
=\frac{1}{2}[(n-1)(n-2)-2(m-1)(n-m-1)]
$$

$|E(G)| \leq \frac{(n-1)(n-2)}{2}$, Since $(m-1)(n-m-1) \geq 0$ for $1 \leq m \leq n-1$

Which is a contradiction as G has more than $\frac{(n-1)(n-2)}{2}$ edges.

Hence G is a connected graph.

Hence the proof.

Theorem: 3

Let \boldsymbol{G} be a simple graph with \boldsymbol{n} vertices. Show that if $\delta(G) \geq\left[\frac{n}{2}\right]$, then \boldsymbol{G} is connected where $\delta(G)$ is minimum degree of the graph G.

Proof:

Let u and v be any two distinct yertices in the graph G.
We claim that there is a $u=v$ path in G.

Suppose $u v$ is not an edge of G. Then, X be the set of all vertices which are adjacent to u and Y be the set of all vertices which are adjacent to v.

Then $u, v \notin X \cup Y$. (Since G is a simple graph)

And hence $|X \cup Y| \leq n-2$

We have $|X|=\operatorname{deg}(u) \geq \delta(G) \geq\left[\frac{n}{2}\right]$ and $|Y|=\operatorname{deg}(v) \geq \delta(G) \geq\left[\frac{n}{2}\right]$

Now, $|X|+|Y| \geq\left[\frac{n}{2}\right]+\left[\frac{n}{2}\right]=n \geq n-1$

We know that $|X \cup Y|=|X|+|Y|-|X \cap Y|$

$$
n-2 \geq|X \cup Y| \geq n-1-|X \cap Y|
$$

We have, $|X \cap Y| \geq 1 \Rightarrow X \cap Y \neq \varnothing$

Now, take a vertex $w \in X \cap Y$. Then $u v w$ is a $u-v$ path in G.

Thus for every pair of distinct vertices of G there is a path between them.

Hence G is connected.

Hence the proof.

