UNIT-IV

FOURIER TRANSFORMS

Example 1

Find the F.T of $f(x)$ defined by

$$
\begin{aligned}
f(x) & =0 & & x<a \\
& =1 & & a<x<b \\
& =0 & & x>b .
\end{aligned}
$$

The F.T of $f(x)$ is given by

$$
\begin{aligned}
& =\frac{1}{\sqrt{ } 2 \pi} \int_{-a}^{a} x \cdot d\left(\frac{e^{i s x}}{i s}\right) \\
& =\frac{1}{\sqrt{ } 2 \pi}\left\{\frac{x e^{i s x}}{i s}-\frac{e^{i s x}}{(i s)^{2}}\right. \\
& =\frac{1}{\sqrt{ } 2 \pi}\left\{\frac{a}{i s}-\frac{e^{i s a}}{(i s)^{2}}+\frac{a e^{-i s a}}{i s}+\frac{e^{-i s a}}{(i s)^{2}}\right\}
\end{aligned}
$$

$$
=\sqrt{2 \pi} \text { is }\left(e^{i s a}+e^{-i s a}\right)+e_{s^{2}}^{1}\left(e^{i s a}-e^{-i s a}\right)
$$

Example 3

Find the F.T of $\quad f(x)=e^{i x}, 0<x<1$

The F.T of $f(x)$ is given by

$$
=0 \quad \text { otherwise }
$$

$$
F\{f(x)\}=\frac{1}{\sqrt{2} \pi-\infty} \int^{\infty} e^{i s x} f(x) d x \text {. }
$$

$$
=\frac{1}{} \quad \int_{\int}^{1} e^{i s x} \cdot e^{i a x} d x .
$$

$$
\begin{aligned}
& \sqrt{ } 2 \pi \\
& 0 \\
&= \frac{1}{\sqrt{ } 2 \pi} \int_{0}^{1} e^{i(s+a) x} \cdot d x \\
&= \frac{1}{\sqrt{2} \pi}\left(\frac{e^{i(s+a) x}}{i(s+a)}\right]_{0}^{1} \\
&= \frac{1}{i \sqrt{2} \pi \cdot(s+a)}\left\{e^{i(s+a) x}-1\right\} \\
&= \frac{i}{\sqrt{2} \pi \cdot(s+a)}\left\{1-e^{i(s+a)}\right\}
\end{aligned}
$$

Example 4

$$
\begin{equation*}
=\frac{1}{\sqrt{2} \cdot a} e^{22^{-s / 4 a}} \tag{i}
\end{equation*}
$$

To find $F\left\{e^{-x / 2}\right\}^{2}$

Putting $a=1 / \sqrt{ } 2 \quad$ in (1), we get

$$
F\left\{e^{-x / 2}\right\}=e^{-s / 2}
$$

Note:
If the F.T of $f(x)$ is $f(s)$, the function $f(x)$ is called self-reciprocal. In the above example $e^{-x / 2}$ is self-reciprocal under F.T.

Example 5

Find the F.T of

Thus, $F\{f(x)\}=F(s)=\sqrt{ }(2 / \pi)$. $\quad, \quad s \neq 0$

S
Now by the inversion formula, we get

Exercises

(1) Find the Fourier transform of $4=0014 \mathrm{PR}^{2} \mathrm{AD}$

$$
f(x)=\begin{array}{ll}
1 & \text { for }|x|<a \\
0 & \text { for }|x|>a .
\end{array}
$$

(2) Find the Fourier transform of

$$
f(x)=\begin{array}{ll}
x^{2} & \text { for }|x| \leq a \\
0 & \text { for }|x|>a .
\end{array}
$$

$$
\{
$$

(3) Find the Fourier transform of

$$
a^{2}-x^{2}, \quad|x|<a
$$

$f(x)=$
$0, \quad|x|>a>0$.

