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DEPARTMENT OF MATHEMATICS
UNIT 11 -FOURIER SERIES

2.1 INTRODUTION OF FOURIER SERIES

A Fourier series of a periodic function consists of a sum of sine and cosine terms. Sines and
cosines are the most fundamental periodic functions.The Fourier series is named after the
French Mathematician and Physicist Jacques Fourier (1768 —1830). Fourier series has its

application in problems pertaining to Heat conduction, acoustics, etc. The subject matter may be
divided into the following sub topics.
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Convergence of Fourier Series:

» At a continuous point x = a, Fourier series converges to f(a)

» Atend point c or c+2l in (c, c+2l), Fourier series converges to

f(c)+f(c+20)
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» At adiscontinuous point x = a, Fourier series converges to 5



Fourier series in an interval of length 2/
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Fourier series of f(x) in (—¢,¢)
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Odd Function
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Fourier series in the Interval of length 2n

f (x) =a7°+i(an cosnx + b, sin nx)

Fourier Series of f(x) in (0,21)
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Half Range Fourier series

Fourier Cosine Series | Fourier Sine Series
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Convergence of Fourier Cosine series:

» At a continuous point X = a, Fourier cosine series converges to f(a).
» Atend point 0 in(0,l), Fourier cosine series converges to f(0+)
> Atend point | in(0,1), Fourier cosine series converges to f(l-)

Convergence of Fourier Sine series:

» At a continuous point X = a, Fourier Sine series converges to f(a).
» At both end points Fourier Sine series converges to 0.

Harmonic Analysis:
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Parseval’s Theorem:
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Root Mean Square Value:

Vz is the effective value (or) Root Mean square (RMS) value of the function y = f(x), which is
given by
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Some Important Results:

Sin nzt =0 for all integer values of n

. Cos nn= (-1)" for all integer values of n
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3. Cos2nr=1 for all integer values of n
4. Sin2nzw = 0 for all integer values of n
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If f(—x ) =f( x) then f(x) is even and If f( —x ) = — f( x ) then f( x ) is odd.

6. f(x) = {(Pl(x) (=£.0) is even if either @ (—X) = @, (X) or @5 (—X) = 1 (X)
¢o(X) (0,0)
7.f(x) = {ilz(())(()) ((;22) is odd if either @; (—X) = —@, (X) or @, (—x) = —@;(X)
X, x>0
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9. [e™ cosbxdx = peanrl [acos bx + bsin bx]

ax

10. [e™ sin bxdx =e—2[asin bx —b cos bx]
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11. Iudv =uv, —u'v, +u’v, —........ Where
, du , d?u
u =i’ u” = s v, :_[dv, vV, :J'vldx, V, :Ivzdx ...........



