
Cell Injury

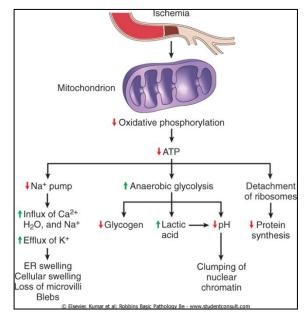
- 4 interrelated cell systems especially susceptible to injury
 - Membranes (cellular and organellar)
 - o Aerobic system
 - Protein synthesis (enzymes, structural proteins, etc)
 - Genetic apparatus (DNA, RNA, etc)
- Mechanisms for cell injury
 - Loss of Ca⁺⁺ homeostasis
 - o Membrane permeability defects
 - ATP depletion
 - \circ O₂ and O₂ derived free radicals
- Causes of Cell Injury
 - Hypoxia (ischemia block in blood flow, hypoxemia decreased partial pressure of oxygen in blood, anemia – decreased oxygen carrying capacity)

ATP

Multipl

 Block in ventilation(foreign body), oxygen diffusion (pneumonia, pulmonary edema), perfusion (pulmonary embolus), decreased cardiac output

MEMBRANE

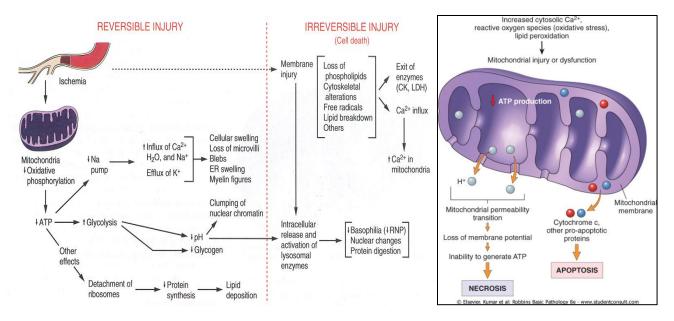

Plasma

↓ Loss of cellula

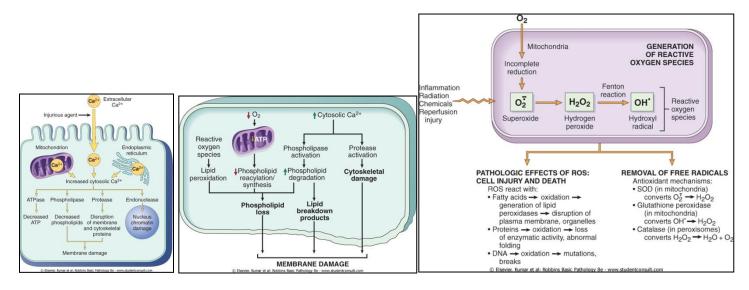
NECROSIS

cellular cor

- Free radical damage
- Chemicals, drugs, toxins
- o Infections
- Physical agents
- Immunologic reactions
- o Genetics
- Nutritional imbalance
- Oxygen tension falls \rightarrow disrupts oxidative phosphorylation \rightarrow decreased ATP
 - \downarrow Na⁺/K⁺ ATPase \rightarrow increased intracellular Na⁺ \rightarrow swelling
 - \downarrow ATP-dependent Ca⁺⁺ pumps → increased cytosolic Ca⁺⁺
 - o Depletion of glycogen from altered metabolism
 - Decreased pH from lactic acid accumulation
 - Decreased protein synthesis from ribosome detachment from RER
- End result cytoskeletal disruption with loss of microvilli, bleb formation, etc



DNA DAMAGE, ACCUMULATION OF MISFOLDED PROTEINS

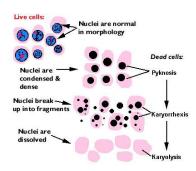

CELL DEATH

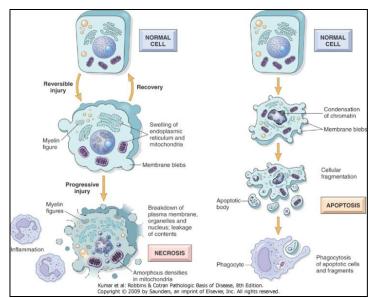
CYTOSKELETAL DAMAGE

Membra



- Excess cytoplasmic $Ca^{++} \rightarrow denatures proteins$, poisons mitochondria, inhibits cellular enzymes
 - Therefore, membrane damage and Ca⁺⁺ homeostasis is critical




- o Injured membranes allow intracellular components to enter the serum and can be measured
- Free radical injury (acetaminophen Tylenol overdose)
 - o Lipid peroxidation damage to cellular and organellar membranes
 - o Protein crosslinking/fragmentation from oxidative modification of amino acids and proteins
 - o DNA damage from free radical reaction with thymine
- Types
 - o Chemical
 - o Inflammation/microbial killing
 - o Irradiation
 - o Oxygen
 - Age-related
- Free Radical Derivations
 - Superoxide O_2^{\bullet} produced by cellular oxidases
 - \circ H₂O₂ produced by superoxide mutase or catalase
 - \circ OH^{•-} produced by ionizing radiation, H₂O₂ and O₂^{•-}, and fenton reaction

- Morphological changes follow functional changes
 - Reversible injury
 - Light microscope cell swelling, fatty change
 - Ultrastructural changes cell membrane alterations, swelling and small deposits of mitochondria, RER and attached ribosome swelling
 - Irreversible injury
 - Light microscope
 - Loss of RNA (which is basophilic) increased cytoplasmic eosinophilia (pink colour)
 - Cytoplasmic vacuolization
 - Nuclear chromatin clumping
 - Ultrastructural
 - Membrane breakage
 - Large amorphous densities in mitochondria
 - Nuclear changes
 - Pyknosis nuclear shrinkage, increased basophilia (blue colour)
 - Karyorrhexis fragmentation of pyknotic nucleus
 - Karyolysis fading of basophilia of chromatin
- Types of Cell Death
 - Apoptosis usually regulated, may be pathogenic, has a role in embryogenesis
 - Necrosis always pathologic, many causes
- Apoptosis
 - Programmed cell death in embryogenesis
 - Hormone dependent involution of adult organs (thymus)
 - o Cell deletion in proliferative populations
 - o Cell death in tumors
 - o Cell injury in some viral diseases (hepatitis)

- Necrosis
 - Causes
 - Coagulative (most common)
 - Cells basic outlines are preserved
 - Homogenous, glassy eosinophilic appearance due to loss of cytoplasmic RNA (basophilic) and glycogen (granular)
 - Nucleus may show any of pyknosis, karyorrhexis, or karyolysis
 - Liquefactive most often in CNS and abscess usually from enzymatic dissolution of necrotic cells (usually due to release of proteolytic enzymes from neutrophils)

- Caseous
 - Gross form resembles cheese
 - Micro form amorphous, granular eosinophilic material surrounded by rim of inflammatory cells (no visible cell outlines, tissue architecture is obliterated)
 - Usually seen in infections (mycobacterial and fungal)
- Enzymatic fat necrosis
 - Hydrolytic action of lipases on fat, most often in and around pancreas, can also be seen in other fatty body areas (usually via trauma)
 - Fatty acids released via hydrolysis \rightarrow react with Ca⁺⁺ to form chalky white areas "saponification"
- Gangrenous necrosis
 - Most often in extremities via trauma/physical injury
 - Dry gangrene no bacterial superinfection, looks dry
 - Wet gangrene has bacterial superinfection, looks wet and liquefactive
- Fibrinoid necrosis
 - Usually seen in walls of vessels (vasculitides)
 - Glassy, eosinophilic fibrin-like material deposited within vascular walls
 - Immune disorders