3.4 Proportion of footings:

> A structure is usually supported on a number of column .These column usually carry a different load depending on their location with respect to structure.
$>$ Differential settlements are minimized by proportioning the footing for the various columns so as to equalize the average bearing pressure under all columns.
$>$ But each column load consists of dead load (DL)+Live load(LL).The full LL does not act all the time(wind load)
$>$ Hence $\mathrm{DL}+$ full LL is not a realistic criterion for producing equal settlement.
$>$ For ordinary building the actual load expected on the building is D.L+50\% L.L.

Procedure:

i. DL inclusive self weight of column and estimated value for footing is noted for each column footing.
ii. LL for each column is calculated(IS code)
iii. The ratio of LL to DL is calculated for each column footing and the maximum value of ratio is noted.
iv. The allowable bearing pressure is calculated by Terazaghi equation.
v. For the footing with largest LL to DL ratio the area of footing required is calculated by total load by allowable bearing pressure.

$$
A=\frac{Q}{\text { allowable pressure }}
$$

vi. The service load for the column is calculated by adding appropriate fraction LL to DL.
vii. The design bearing capacity $\left(\mathrm{q}_{\mathrm{d}}\right)$ is obtained by dividing the service load of maximum LL to DL ratio by the area of footing

$$
q_{d}=\frac{\text { Service load }}{A}
$$

viii. This pressure is less than the pressure computed in(iv)
ix. The area of footing for each of the column is obtained by dividing the corresponding service load by the allowable bearing pressure

$$
A=\frac{\text { service load for that column }}{q_{d}}
$$

Design Procedure for Proportioning of rectangular footing:

Consider dead load + reduced live load
Step1) To find column load

$$
\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}
$$

$\mathrm{Q}_{1}=$ load in exterior column
$\mathrm{Q}_{2}=$ load in interior column
Step2) Find the area of footing

$$
\begin{gathered}
A=\frac{Q}{q_{n a}}=\frac{Q}{q_{s}} \\
q_{n a}=\text { Allowable bearing pressure }
\end{gathered}
$$

Step3) Locate the line of action of the column loads measured from the centre of the exterior column

$$
\bar{x}_{1}=\frac{Q_{2} x_{2}}{Q_{1}+Q_{2}}
$$

$\mathrm{X}_{2}=$ centre to centre distance between the column
Step4) Define the total length of the footing

$$
\begin{gathered}
L=2\left(\bar{x}+e_{1}\right) \\
e_{1}=\text { projection of footing }
\end{gathered}
$$

Step 5) Find the width of the footing

$$
B=\frac{A}{L}
$$

Step6) Find the actual area provided $\left(\mathrm{A}_{0}\right)$
Step 7)Find the actual pressure

Consider dead load +full live load

$$
\begin{aligned}
q_{\max } & =\frac{Q}{A_{o}}\left(1+\frac{6 e}{L}\right) \\
q_{\min } & =\frac{Q}{A_{o}}\left(1-\frac{6 e}{L}\right)
\end{aligned}
$$

Step 8) Check the Pressure

Actual pressure<allowable pressure
1.Proportion a rectangular combined footing for a uniform pressure under DL+reduced

LL with the following data allowable pressure
DL+reduced LL=180 KN/m ${ }^{2}$
$\mathrm{DL}+\mathrm{LL}=270 \mathrm{KN} / \mathrm{m}^{2}$

Column Load

Load	Column A	Column B
DL	500 KN	660 KN
LL	400 KN	840 KN

C / C distance of column 5 m , Projection of footing is 0.5 m
Soln:

Column load	Column A	Column B	Total load
DL+reducedLL	$=500+0.5 \mathrm{x} 400$	$=660+\frac{50}{100} 840$	
$=700 \mathrm{KN}$	$=700+1080=1780 \mathrm{KN}$		
DL+LL	$=500+400=900 \mathrm{KN}$	$=660+840=1500 \mathrm{KN}$	$=900+1500=2400 \mathrm{KN}$

Consider full dead load $+50 \%$ reduced live load

Step1) To find column load

$$
\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=700+1080=1780 \mathrm{KN}
$$

Step2)Find the area of footing

$$
\begin{gathered}
A=\frac{Q}{q_{n a}}=\frac{Q}{q_{s}}=\frac{1780}{\underline{180}}=9.88 \mathrm{~m}^{2} \\
q_{n a}=\text { Allowable bearing pressure }
\end{gathered}
$$

Step3)Locate the line of action of the column loads measured from the centre of the exterior column

$$
\bar{x}_{1}=\frac{Q_{2} x_{2}}{Q_{1}+Q_{2}}=\frac{1080 \times 5}{700+1080}=3.03 \mathrm{~m}
$$

$\mathrm{X}_{2}=$ centre to centre distance between the column
Step4)Define the total length of the footing

$$
\begin{gathered}
L=2\left(\bar{x}_{1}+e_{1}\right) \\
L=2(3.03+0.5)=7.06 m \\
e_{1}=\text { projection of footing }
\end{gathered}
$$

Step 5) Find the width of the footing

$$
B=\frac{A}{L}=\frac{9.88}{7.06}=1.39 m=1.4 m
$$

Step6) Find the actual area provided $\left(\mathrm{A}_{0}\right)$

$$
A_{o}=B x L=1.4 x 7.06=9.88 \mathrm{~m}^{2}
$$

Step 7)Find the actual pressure

$$
\begin{aligned}
q_{\max } & =\frac{Q}{A_{o}}\left(1+\frac{6 e}{L}\right) \\
q_{\min } & =\frac{Q}{A_{o}}\left(1-\frac{6 e}{L}\right)
\end{aligned}
$$

$$
e=\overline{x_{1}}-x
$$

Find uniform pressure under full DL+LL

$$
\begin{gathered}
\bar{x}_{2}=\frac{Q_{2} x_{2}}{Q_{1}+Q_{2}} \\
\bar{x}_{2}=\frac{1500 x 5}{900+1500}=3.125 \mathrm{~m} \\
e=3.03-3.125=0.095=0.1 \mathrm{~m} \\
q_{\max }=\frac{(900+1500)}{9.89}\left(1+\frac{6 x 0.1}{7.06}\right)=263.04 \mathrm{KN} / \mathrm{m}^{2}<270 \mathrm{KN} / \mathrm{m}^{2} \\
q_{\min }=\frac{(900+1500)}{9.89}\left(1-\frac{6 x 0.1}{7.06}\right)=222.7<270 \mathrm{KN} / \mathrm{m}^{2} \\
\text { Hence ok }
\end{gathered}
$$

Provide rectangular footing of size $7.06 \times 1.4 \mathrm{~m}$

Proportioning of trapezoidal footing:

2.Proportion a trapezoidal combined footing for uniform pressure under a dead load +reduced live load with the following data
Allowable bearing pressure:
DL+reducedLL=180KN/m²
DL+LL=280KN/m ${ }^{2}$

Column load	A	B
DL	500 KN	660 KN
LL	400 KN	840 KN

Distance between c/c column $=5 \mathrm{~m}$
Projection beyond column $\mathrm{A}=0.5 \mathrm{~m}$

Solution:

Column load	A	B	total
DL + reduced LL	700 KN	1080 KN	1780 KN
DL+LL	900 KN	1500 KN	2400 KN

For uniform pressure under DL+ reduced LL
Area:

$$
\begin{gathered}
A=\frac{Q}{q_{n a}}=\frac{1780}{180}=9.89 \mathrm{~m}^{2} \\
\bar{x}=\frac{Q_{2} x_{2}}{Q_{1}+Q_{2}} \\
=\frac{1080 \times 5}{1780}=3.03 \mathrm{~m}
\end{gathered}
$$

Length of footing:
Length $=$ C/c distance + projection on both sides
$=5+0.5+0.5=6 \mathrm{~m}$

$$
\begin{gathered}
A=\frac{L}{2}\left(B_{1}+B_{2}\right) \\
9.89=\frac{6}{2}\left(B_{1}+B_{2}\right) \\
B_{1}+B_{2}=3.30 \ldots .(1)
\end{gathered}
$$

We know that

$$
\begin{gathered}
\frac{L}{3}\left(\frac{B_{1}+2 B_{2}}{B_{1}+B_{2}}\right)=\bar{x}+e \\
\frac{6}{3}\left(\frac{B_{1}+2 B_{2}}{B_{1}+B_{2}}\right)=3.03+0.5 \\
\left(\frac{B_{1}+2 B_{2}}{B_{1}+B_{2}}\right)=1.77 \\
-B_{1}+0.43 B_{2}=0---(2)
\end{gathered}
$$

Solve (1) \& (2)
$\mathrm{B}_{1}=1 \mathrm{~m}$
$\mathrm{B}_{2}=2.40 \mathrm{~m}$

Total area provided $=\frac{2.40+1}{2} x 6=10.2 \mathrm{~m}^{2}$
For dead load +live load calculations

$$
\bar{x}=\frac{6}{3}\left(\frac{1+2 x 2.4}{1+2.4}\right)=3.41 m
$$

Location of resultant DL+LL for exterior column

$$
=\frac{Q_{2} x_{2}}{Q}=\frac{1500 \times 5}{2400}=3.125 \mathrm{~m}
$$

Location of resultant from the outer edge of the footing

$$
=3.125+0.5=3.625 \mathrm{~m}
$$

Eccentricity e $=3.625-3.43=0.195 \mathrm{~m}$
Determination of pressure:

$$
\begin{aligned}
& \text { moment of inertia }=\left[\frac{B_{1}^{2}+4 B_{1} B_{2}+B_{2}^{2}}{36\left(B_{1}+B_{2}\right)}\right] L^{3} \\
& \text { moment of inertia }=\left[\frac{1^{2}+4 \times 1 \times 2.40+2.4^{2}}{36(1+2.4)}\right] 6^{3} \\
& =28.87 \mathrm{~m}^{4} \\
& q_{\max }=\frac{Q}{A}+\left[\frac{Q x \operatorname{ex} X}{I}\right]
\end{aligned}
$$

$$
\begin{gathered}
=\frac{2400}{10.2}+\left[\frac{2400 x 0.195 x(6-3.41)}{28.87}\right]=277<280 \mathrm{KN} / \mathrm{m}^{2} \\
q_{\max }=\frac{Q}{A}-\left[\frac{Q x e x X}{I}\right]
\end{gathered}
$$

$$
\begin{gathered}
=\frac{2400}{10.2}-\left[\frac{2400 x 0.195 x(6-3.41)}{28.87}\right] \\
=193.3<280 \mathrm{KN} / \mathrm{m}^{2} \\
\text { Hence OK }
\end{gathered}
$$

Proportioning of strap footing:

3. Proportioning of strap footing for the following data:

Allowable pressure $=150 \mathrm{KN} / \mathrm{m}^{2}$ for $\mathrm{DL}+$ reduced LL
Allowable pressure $=225 \mathrm{KN} / \mathrm{m}^{2}$ for $\mathrm{DL}+\mathrm{LL}$

Column Load	A	B
DL	500 KN	600 KN
LL	450 KN	800 KN

Proportion the footing for uniform pressure under DL+reduced LL centre to centre spacing between column $=5.4 \mathrm{~m}$.projection beyond column A should not exceed 0.5 m Solution:

Step 1:Assume eccentricity e $=0.6 \mathrm{~m}$

Column load	A	B	total
DL+reduced LL	725 KN	1000 KN	1725 KN
DL+LL	950 KN	1400 KN	2350 KN

Step 2) Determine the length of footing of exterior column

$$
\begin{gathered}
L_{1}=2\left(e+0.5 b_{1}\right) \\
L_{1}=2(0.6+0.5 \times 1)=2.2 m
\end{gathered}
$$

Consider DL+reduced LL

Steps 3) compute the reaction R_{1} by taking moment about the line of action of the reaction

$$
R_{1}=\frac{Q_{1} x_{2}}{S}=\frac{725 \times 5.4}{4.8}=815 \mathrm{KN}
$$

Steps 4) compute R_{2}

$$
\begin{gathered}
R_{2}=\left(Q_{1}+Q_{2}\right)-R_{1} \\
=1725-815=910 \mathrm{KN}
\end{gathered}
$$

Steps 5) compute the area of footing A1

$$
\begin{aligned}
& A_{1}=\frac{R_{1}}{q_{n a}}=\frac{815}{150}=5.4 \mathrm{~m}^{2} \\
& A_{2}=\frac{R_{2}}{q_{n a}}=\frac{910}{150}=6.07 \mathrm{~m}^{2}
\end{aligned}
$$

Step 6) calculate width of footing

$$
B_{1}=\frac{A_{1}}{L_{1}}=\frac{5.4}{2.2}=245 \mathrm{~m}
$$

Provide a width of 2.50 m
Consider $\mathrm{B}_{1}=\mathrm{B}_{2}=2.5 \mathrm{~m}$

$$
\begin{gathered}
B_{2}=\sqrt{A_{2}} \\
B_{2}=\frac{A_{2}}{L_{2}} \\
L_{2}=\frac{A_{2}}{B_{2}}=\frac{6.07}{2.5}=243 \mathrm{~m}
\end{gathered}
$$

Provide the length is 2.5 m
Step 7) calculate Pressure intensity

$$
q_{1}=\frac{R_{1}}{L^{x B}}
$$

$$
\begin{gathered}
=\frac{815}{2.2 x 2.5} \\
=\frac{148.18 K N}{m^{2}}<150 \mathrm{KN} / \mathrm{m}^{2}
\end{gathered}
$$

$$
\begin{gathered}
q_{2}=\frac{R_{2}}{L^{x B}} \\
=\frac{910}{2.5 x 2.5} \\
=\frac{145.6 \mathrm{KN}}{m^{2}}<150 \mathrm{KN} / \mathrm{m}^{2}
\end{gathered}
$$

Provide the strap footing of size
$2.2 \times 2.5 \mathrm{~m}$ and $2.5 \times 2.5 \mathrm{~m}$

