
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 BINARY TREES

 Binary Tree is defined as a Tree data structure with at most 2 children. Since each

element in a binary tree can have only 2 children, we typically name them the left

and right child.

 Binary Tree Representation

 A Binary tree is represented by a pointer to the topmost node of the tree. If the tree

is empty, then the value of the root is NULL.

 Binary Tree node contains the following parts:

 Data

 Pointer to left child

 Pointer to right child

 Types of Binary Trees

 There are various types of binary trees, and each of these binary tree types has

unique characteristics. Here are each of the binary tree types in detail:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Full Binary Tree

 It is a special kind of a binary tree that has either zero children or two

children. It means that all the nodes in that binary tree should either have

two child nodes of its parent node or the parent node is itself the leaf node

or the external node.

 Complete Binary Tree

 A complete binary tree is another specific type of binary tree where all

the tree levels are filled entirely with nodes, except the lowest level of

the tree. Also, in the last or the lowest level of this binary tree, every node

should possibly reside on the left side.

 Perfect Binary Tree

 A binary tree is said to be ‘perfect’ if all the internal nodes have strictly two

children, and every external or leaf node is at the same level or same depth

within a tree. A perfect binary tree having height ‘h’ has 2h – 1 node.

 Balanced Binary Tree

 A balanced binary tree, also referred to as a height-balanced binary tree, is

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

defined as a binary tree in which the height of the left and right subtree of any

node differs by not more than 1.

 Degenerate Binary Tree

 A binary tree is said to be a degenerate binary tree or pathological binary tree

if every internal node has only a single child.

 Benefits of Binary Trees:

 The search operation in a binary tree is faster as compared to other trees

 Only two traversals are enough to provide the elements in sorted order

 It is easy to pick up the maximum and minimum elements

 Graph traversal also uses binary trees

 Converting different postfix and prefix expressions are possible using binary trees

 Types of Tree Traversal

 Preorder traversal

 In a preorder traversal, we process/visit the root node first. Then we traverse

the left subtree in a preorder manner. Finally, we visit the right subtree again

in a preorder manner.

 For example, consider the following tree:

 TREE TRAVERSAL

 Tree traversal means visiting each node of the tree. The tree is a non-linear data

structure, and therefore its traversal is different from other linear data structures.

 There is only one way to visit each node/element in linear data structures, i.e.

starting from the first value and traversing in a linear order.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 Here, the root node is A. All the nodes on the left of A are a part of the left

subtree whereas all the nodes on the right of A are a part of the right subtree.

Thus, according to preorder traversal, we will first visit the root node, so A

will print first and then move to the left subtree.

 B is the root node for the left subtree. So B will print next, and we will visit

the left and right nodes of B. In this manner, we will traverse the whole left

subtree and then move to the right subtree. Thus, the order of visiting the

nodes will be A→B→C→D→E→F→G→H→I.

 Algorithm for Preorder Traversal

o for all nodes of the tree:

 Step 1: Visit the root node.

 Step 2: Traverse left subtree recursively.

 Step 3: Traverse right subtree recursively.

 Pseudo-code for Preorder Traversal

void Preorder(struct node* ptr)

{

if(ptr != NULL)

{

printf("%d", ptr-

>data); Preorder(ptr-

>left); Preorder(ptr-

>right);

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

}

 Uses of Preorder Traversal

o If we want to create a copy of a tree, we make use of preorder

traversal.

o Preorder traversal helps to give a prefix expression for the expression

tree.

 Inorder Traversal

 In an inorder traversal, we first visit the left subtree, then the root node and

then the right subtree in an inorder manner.

 Consider the following tree:

 In this case, as we visit the left subtree first, we get the node with the value

30 first, then 20 and then 40. After that, we will visit the root node and print

it. Then comes the turn of the right subtree. We will traverse the right subtree

in a similar manner. Thus, after performing the inorder traversal, the order of

nodes will be 30→20→40→10→50→70→60→80.

 Algorithm for Inorder Traversal

o for all nodes of the tree:

 Step 1: Traverse left subtree recursively.

 Step 2: Visit the root node.

 Step 3: Traverse right subtree recursively.

 Pseudo-code for Inorder Traversal

void Inorder(struct node* ptr)

{

if(ptr != NULL)

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

Inorder(ptr->left);

printf("%d", ptr-

>data); Inorder(ptr-

>right);

}

}

 Uses of Inorder Traversal

o It helps to delete the tree.

o It helps to get the postfix expression in an expression tree.

 Postorder Traversal

 Postorder traversal is a kind of traversal in which we first traverse the left

subtree in a postorder manner, then traverse the right subtree in a postorder

manner and at the end visit the root node.

 For example, in the following tree:

 The postorder traversal will be 7→5→4→20→60→30→10.

 Algorithm for Postorder Traversal

o or all nodes of the tree:

 Step 1: Traverse left subtree recursively.

 Step 2: Traverse right subtree recursively.

 Step 3: Visit the root node.

 Pseudo-code for Postorder Traversal

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

void Postorder(struct node* ptr)

{

if(ptr != NULL)

{

Postorder(ptr->left);

Postorder(ptr->right);

printf(“%d”, ptr->data);

}

}

 Uses of Postorder Traversal

o It helps to delete the tree.

o It helps to get the postfix expression in an expression tree.

	BINARY TREES
	Binary Tree Representation
	Types of Binary Trees
	 Full Binary Tree
	 Complete Binary Tree
	 Perfect Binary Tree
	 Balanced Binary Tree
	 Degenerate Binary Tree

	Benefits of Binary Trees:
	Types of Tree Traversal
	 Preorder traversal

	TREE TRAVERSAL
	 Algorithm for Preorder Traversal
	 Pseudo-code for Preorder Traversal
	 Uses of Preorder Traversal
	 Inorder Traversal
	 Algorithm for Inorder Traversal
	 Pseudo-code for Inorder Traversal
	 Uses of Inorder Traversal
	 Postorder Traversal
	 Algorithm for Postorder Traversal
	 Pseudo-code for Postorder Traversal
	 Uses of Postorder Traversal

