Co-ordinate Systems

In order to describe the spatial variations of the quantities, we require using appropriate co-ordinate system. A point or vector can be represented in a curvilinear coordinate system that may be orthogonal or non-orthogonal.

An orthogonal system is one in which the co-ordinates are mutually perpendicular. Non-orthogonal co-ordinate systems are also possible, but their usage is very limited in practice .

Let $u=$ constant, $v=$ constant and $w=$ constant represent surfaces in a coordinate system, the surfaces may be curved surfaces in general. Furthur, let
$\mathrm{t} \hat{a}_{u}, \hat{a}_{v}$ and \hat{a}_{w}
be the unit vectors in the three coordinate directions(base vectors). In a general right handed orthogonal curvilinear systems, the vectors satisfy the following relations :

$$
\begin{align*}
& \hat{a_{u}} \times \hat{a_{v}}=\hat{a_{w}} \\
& \hat{a_{v}} \times \hat{a_{w}}=\hat{a_{u}} \\
& \hat{a_{w}} \times \hat{a_{z}}=\hat{a_{v}} \tag{1.13}
\end{align*}
$$

These equations are not independent and specification of one will automatically imply the other two. Furthermore, the following relations hold

$$
\begin{align*}
& \hat{a_{u}} \cdot \hat{a_{v}}=\hat{a_{v}} \cdot \hat{a_{w}}=\hat{a_{w}} \cdot \hat{a_{u}}=0 \\
& \hat{a_{u}} \cdot \hat{a_{u}}=\hat{a_{v}} \cdot \hat{a_{v}}=\hat{a_{w}} \cdot \hat{a_{w}}=1 . \tag{1.14}
\end{align*}
$$

A vector can be represented as sum of its orthogonal components, ${ }^{A}=A_{u} \hat{a}_{u}+A_{v} \hat{a}_{v}+A_{w} \hat{a}_{w}$ (1.15)

In general u, v and w may not represent length. We multiply u, v and w by conversion factors $h 1, h 2$ and $h 3$ respectively to convert differential changes $\mathrm{d} u$, $\mathrm{d} v$ and $\mathrm{d} w$ to corresponding changes in length $\mathrm{d} l 1, \mathrm{~d} l 2$, and $\mathrm{d} l 3$. Therefore

$$
\begin{align*}
d \vec{l} & =\hat{a_{u}} d l_{1}+\hat{a}_{v} d l_{2}+\hat{a}_{w} d l_{3} \\
& =h_{1} d u \hat{a}_{u}+h_{2} d v \hat{a}_{v}+h_{3} d w \hat{a}_{w} \tag{1.16}
\end{align*}
$$

In the same manner, differential volume $\mathrm{d} v$ can be written as $\mathrm{d} v=h_{1} h_{2} h_{3} \mathrm{~d} u \mathrm{~d} v \mathrm{~d} w$ and differential area $\mathrm{d} s_{1}$ normal to \hat{a}_{u} is given by, ${ }^{\mathrm{d} s_{1}}=h_{2} h_{3} \mathrm{~d} v \mathrm{~d} w$. In the same manner, differential areas normal to unit vectors \hat{a}_{v} and \hat{a}_{w} can be defined.

In the following sections we discuss three most commonly used orthogonal coordinate systems, viz:

1. Cartesian (or rectangular) co-ordinate system

2. Cylindrical co-ordinate system

3. Spherical polar co-ordinate system

Cartesian Co-ordinate System :

In Cartesian co-ordinate system, we have, $(u, v, w)=(x, y, z)$. A point $P(x 0, y 0, z 0)$ in Cartesian co-ordinate system is represented as intersection of three planes $x=x 0, y=y 0$ and $z=z 0$. The unit vectors satisfies the following relation:

$$
\begin{aligned}
& \hat{a_{x}} \times \hat{a_{y}}=\hat{a_{z}} \\
& \hat{a_{y}} \times \hat{a_{z}}=\hat{a_{x}} \\
& \hat{a_{z}} \times \hat{a_{x}}=\hat{a_{y}} \\
& \hat{a_{x}} \cdot \hat{a_{y}}=\hat{a}_{y} \cdot \hat{a_{z}}=\hat{a_{z}} \cdot \hat{a}_{x}=0 \\
& \hat{a_{x}} \cdot \hat{a_{x}}=\hat{a}_{y} \cdot \hat{a_{y}}=\hat{a_{z}} \cdot \hat{a_{z}}=1 \\
& \overrightarrow{O P}=\hat{a_{x}} x_{0}+\hat{a_{y}} y_{0}+\hat{a_{z}} z_{0}
\end{aligned}
$$

In cartesian co-ordinate system, a vector \vec{A} can be written as $\vec{A}=\hat{a}_{x} A_{z}+\hat{a}_{y} A_{y}+\hat{a}_{z} A_{z}$. The dot and cross product of two vectors \vec{A} and \vec{B} can be written as follows:

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

$$
\vec{A} \times \vec{B}=\hat{a}_{x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\hat{a}_{y}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\hat{a}_{z}\left(A_{x} B_{y}-A_{y} B_{x}\right)
$$

$$
=\left|\begin{array}{lll}
\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \tag{1.20}\\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Since x, y and z all represent lengths, $h 1=h 2=h 3=1$. The differential length, area and volume are defined respectively as

$$
\begin{align*}
& d \vec{l}=d x \hat{a}_{x}+d y \hat{a}_{y}+d z \hat{a}_{z} . \tag{1.21}\\
& d \overrightarrow{s_{x}}=d y d z \hat{a}_{x} \\
& d \vec{s}_{y}=d x d z \hat{a}_{y} \\
& d \vec{s}_{z}=d x d y \hat{a}_{z} \\
& d v=d x d y d z \quad \tag{1.22}
\end{align*}
$$

Cylindrical Co-ordinate System :

For cylindrical coordinate systems we have ${ }^{(u, v, w)}=(r, \phi, z)$ a point $P\left(r_{0}, \phi_{0}, z_{0}\right)$ is determined as the point of intersection of a cylindrical surface $r=r_{0}$, half plane containing the z-axis and making an angle $\phi=\phi$; with the xz plane and a plane parallel to $x y$ plane located at $z=z_{0}$ as shown in figure 7 on next page.

In cylindrical coordinate system, the unit vectors satisfy the following relations
A vector \vec{A} can be written as, $\vec{A}=A_{\rho} \hat{a}_{\rho}+A_{\phi} \hat{a_{\phi}}+A_{z} \hat{a_{z}}$
The differential length is defined as,

$$
d \vec{l}=\hat{a}_{\rho} d \rho+\rho d \phi \hat{a}_{\phi}+d z \hat{a}_{z} \quad h_{1}=1, h_{2}=\rho, h_{3}=1 .
$$

$\hat{a}_{\rho} \times \hat{a}_{\varphi}=\hat{a}_{z}$
$\hat{a}_{\phi} \times \hat{a}_{z}=\hat{a}_{\rho}$
$\hat{a}_{z} \times \hat{a}_{p}=\hat{a}_{\phi}$

Fig 1.7 : Cylindrical Coordinate System

Fig 1.8 : Differential Volume Element in Cylindrical Coordinates

Transformation between Cartesian and Cylindrical coordinates:

Let us consider $\vec{A}=\hat{a}_{\rho} A_{\rho}+\hat{a}_{\phi} A_{\phi}+\hat{a}_{z} A_{z}$ is to be expressed in Cartesian co-ordinate as $\vec{A}=\hat{a}_{x} A_{x}+\hat{a}_{y} A_{y}+\hat{a}_{z} A_{z}$. In doing so we note that $A_{x}=\vec{A} \cdot \hat{a}_{x}=\left(\hat{a}_{\rho} A_{\rho}+\hat{a}_{\phi} A_{\phi}+\hat{a}_{z} A_{x}\right) \hat{a}_{x}$ and it applies for other components as well.

$$
\begin{align*}
& \hat{a}_{p} \cdot \hat{a}_{x}=\cos \phi \\
& \hat{a}_{p} \cdot \hat{a}_{y}=\sin \phi \\
& \hat{a}_{\phi} \cdot \hat{a}_{x}=\cos \left(\phi+\frac{\pi}{2}\right)=-\sin \phi \tag{1.28}\\
& \hat{a}_{\phi} \cdot \hat{a}_{y}=\cos \phi \\
& \text { Theretore we can write, } \\
& A_{z}-\vec{A} \hat{a}_{y}-A_{p} \cos \phi-A_{\phi} \sin \phi \\
& A_{y}-\vec{A} \hat{a}_{y}=A_{p} \sin \phi+A_{\phi} \cos \phi \tag{1.29}\\
& A_{z}=\vec{A} \hat{a}_{z}=A_{z}
\end{align*}
$$

Fig 1.9: Unit Vectors in Cartesian and Cplindrical Coordinates

These relations can be put conveniently in the matrix form as:

$$
\left[\begin{array}{l}
A_{x} \tag{1.30}\\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{\rho} \\
A_{y} \\
A_{z}
\end{array}\right] .
$$

A_{ρ}, A_{ϕ} and $A_{\text {s }}$ themselves may be functions of ρ, ϕ and z as:
$x=\rho \cos \phi$
$y=\rho \sin \phi$
$z=z$

$$
\begin{align*}
& \rho=\sqrt{x^{2}+y^{2}} \tag{1.31}\\
& \phi=\tan ^{-1} \frac{y}{x} \tag{1.32}
\end{align*}
$$

The inverse relationships are: $\quad z=z$

Fig 1.10: Spherical Polar Coordinate System

Thus we see that a vector in one coordinate system is transformed to another coordinate system through two-step process: Finding the component vectors and then variable transformation.

Spherical Polar Coordinates:

For spherical polar coordinate system, we have, $(u, v, w)=(r, \theta, \phi)$. A point $P\left(r_{0}, \theta_{0}, \phi_{0}\right)$ is represented as the intersection of
(i) Spherical surface $r=r_{0}$
(ii) Conical surface $\theta=\theta_{0}$, and
(iii) half plane containing z-axis making angle $\phi=\phi_{0}$ with the $x z$ plane as shown in the figure 1.10.

$$
\begin{aligned}
& \hat{a_{r}} \times \hat{a_{\theta}}=\hat{a_{\phi}} \\
& \hat{a_{\theta}} \times \hat{a_{\theta}}=\hat{a_{r}}
\end{aligned}
$$

The unit vectors satisfy the following relationships: $\hat{a}_{\phi} \times \hat{a}_{\gamma}=\hat{a}_{\theta}$

The orientation of the unit vectors are shown in the figure 1.11.

Fig 1.11: Orientation of Unit Vectors

A vector in spherical polar co-ordinates is written as: $\vec{A}=A_{\gamma} \hat{a}_{\gamma}+A_{\theta} \hat{a}_{\theta}+A_{\phi} \hat{a}_{\phi}$ and $d \vec{l}=\hat{a}_{r} d r+\hat{a}_{\theta} r d \theta+\hat{a}_{\phi} r \sin \theta d \phi$
For spherical polar coordinate system we have $h_{1}=1, h_{2}=r$ and $h_{3}=r \sin \theta$.

Fig 1.12(a): Differential volume in s-p coordinates

Fig 1.12(b) : Exploded view

With reference to the Figure 1.12, the elemental areas are:

$$
\begin{align*}
& \mathrm{d} s_{y}=r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \hat{a_{r}} \\
& \mathrm{~d} s_{\theta}=r \sin \theta \mathrm{~d} r \mathrm{~d} \phi \hat{a}_{\theta} \\
& \mathrm{d} s_{\rho}=r \mathrm{~d} r \mathrm{~d} \theta \hat{a_{\phi}} \tag{1.34}
\end{align*}
$$

and elementary volume is given by

$$
\begin{equation*}
\mathrm{d} \nu=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \tag{1.35}
\end{equation*}
$$

Coordinate transformation between rectangular and spherical polar:
With reference to the Figure 1.12, the elemental areas are:

$$
\begin{align*}
& \hat{a_{r}} \cdot \hat{a}_{x}=\sin \theta \cos \phi \\
& \hat{a_{r}} \cdot \hat{a}_{y}=\sin \theta \sin \phi \\
& \hat{a_{r}} \cdot \hat{a_{z}}=\cos \theta \\
& \hat{a_{\theta}} \cdot \hat{a_{x}}=\cos \theta \cos \phi \\
& \hat{a_{\theta}} \cdot \hat{a_{y}}=\cos \theta \sin \phi \\
& \hat{a_{\theta}} \cdot \hat{a_{z}}=\cos \left(\theta+\frac{\pi}{2}\right)=-\sin \theta \\
& \hat{a_{\phi}} \cdot \hat{a_{x}}=\cos \left(\phi+\frac{\pi}{2}\right)=-\sin \phi \\
& \hat{a_{\phi}} \cdot \hat{a_{y}}=\cos \phi \\
& \hat{a_{\phi}} \cdot \hat{a}_{z}=0 \tag{1.36}
\end{align*}
$$

Fig 1.13: Coordinate transformation

Given a vector $\vec{A}=A_{\gamma} \hat{a}_{\gamma}+A_{\theta} \hat{a}_{\theta}+A_{\phi} \hat{a}_{\phi}$ in the spherical polar coordinate system, its component in the cartesian coordinate system can be found out as follows:

$$
\begin{equation*}
A_{x}=\vec{A} \cdot \hat{a}_{x}=A_{r} \sin \theta \cos \phi+A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi . \tag{1.37}
\end{equation*}
$$

Similarly,
$A_{y}=\vec{A} \hat{a}_{y}=A_{r} \sin \theta \sin \phi+A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi$.
$A_{z}=\vec{A} \hat{a}_{z}=A_{r} \cos \theta-A_{\theta} \sin \theta$

The above equation can be put in a compact form:
$\left[\begin{array}{l}A_{x} \\ A_{\nu} \\ A_{z}\end{array}\right]=\left[\begin{array}{ccc}\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\ \cos \theta & -\sin \theta & 0\end{array}\right]\left[\begin{array}{l}A_{\gamma} \\ A_{\theta} \\ A_{\phi}\end{array}\right]$

The components A_{r}, A_{θ} and A_{ϕ} themselves will be functions of r, θ and $\phi . r, \theta$ and $\phi_{\text {are related to }}$ x, y and z as:

$$
\begin{align*}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \tag{1.40}
\end{align*}
$$

and conversely,

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{1.41a}
\end{equation*}
$$

$$
\begin{equation*}
\theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{1.41b}
\end{equation*}
$$

$$
\begin{equation*}
\phi=\tan ^{-1} \frac{y}{x} . \tag{1.41c}
\end{equation*}
$$

\qquad

Using the variable transformation listed above, the vector components, which are functions of variables of one coordinate system, can be transformed to functions of variables of other coordinate system and a total transformation can be done.

