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CHAPTER 2 DYNAMIC FORCE ANALYSIS

When the inertia forces are considered in the analysis of the mechanism, the analysis is known as
dynamic force analysis. Now applying D’Alembert principle one may reduce a dynamic system into an
equivalent static system and use the techniques used in static force analysis to study the system.

Inertia force and couple
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Figure 1: Illustration of inertia force (i) a translating body (ii) a compound pendulum, (iii) inertia force
and couple on compound pendulum.

Consider a body of mass m moving with acceleration a as shown in figure 1(i). According to D’ Alembert
Principle, the body can be brought to equilibrium position by applying a force equal to K, =maand in a
direction opposite to the direction of acceleration. Figure 1 (ii) shows a compound pendulum of
mass m, moment of inertia |, about center of mass G while rotating at its center of mass has a
linear acceleration of aand angular acceleration of «. Figure 1(iii) shows the inertia force and
couple acting on the pendulum.

Equivalent off-set Inertia force

(iv)

(ii) (iii)

Figure 2: (i) llustration of equivalent off-set inertia force
Figure 2(i) shows a body with inertia force F; and inertia couple I,. The couple can be replaced by two
parallel forces (equal in magnitude and opposite in direction) acting at G and H respectively as shown in

Figure 2(ii). If we consider their magnitude of these forces same as that of inertia force, then the equal
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and opposite forces at point G will cancel each other and the resulting force will be a force at H which is
in the same direction as inertia force. If h is the minimum distance between the force at G and H, then

where |, and F, are magnitude of I, and F; respectively. This force acting at H is known as equivalent
offset inertia force. For the compound pendulum shown in Figure 1(iii), the equivalent offset inertia force
is shown in Figure 2(iii).

Dynamic force analysis of four bar mechanism

Let us study the four bar mechanism where m,, m; and m, are mass of link 2,3 and 4 respectively. We
have to find the torque required at link 2 for dynamic equilibrium when an external force F, acts on link

4 as shown in figure 3. Now for dynamic force analysis the following steps may be followed.

External force

Figure 1: Four bar mechanism showing external and constraint forces
o Draw the acceleration diagram or use any analytical method to determine acceleration
o Determine angular acceleration of link 2,3 and 4.
e Determine linear acceleration of center of mass (a,; i =2,3,4) of link23and 4.
e The magnitude of inertia force of link i (i =2,3 or 4) can be determined by multiplying mass of

link i with the corresponding acceleration of the center of mass.

e The direction of the inertia force is opposite to the direction of the acceleration.

e Determine the magnitude of inertia couple which is equal to 1;&;

e The direction of the inertia couple is opposite to that of angular acceleration.
e Replace the inertia force and couple by the equivalent offset inertia force for each link.

o Treat these offset inertia force as external force and follow the procedure for static force analysis.
e One may use either super-position principle or principle of virtual work to find the required

torque for equilibrium.

F, =—ma

gi gi
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Dynamic Force Analysis of a Four bar Mechanism using Matrix Method

In the four bar mechanism shown in Figure 1, Link 1 is the ground link (sometimes called the
frame or fixed link), and is assumed to be motionless. Links 2 and 4 each rotate relative to the
ground link about fixed pivots (A and D). Link 3 is called the coupler link, and is the only link
that can trace paths of arbitrary shape (because it is not rotating about a fixed pivot). Usually one
of the "grounded links" (link 2 or 4) serves as the input link, which is the link which may either
be turned by hand, or perhaps driven by an electric motor or a hydraulic or pneumatic cylinder. If
link 2 is the input link, then link 4 is called the follower link, because its rotation merely follows
the motion as determined by the input and coupler link motion. If link 2 is the input link and its
possible range of motion is unlimited, it is called a crank, and the linkage is called a crank-
rocker. Crank-rockers are very useful because the input link can be rotated continuously while a
point on its coupler traces a closed complex curve.

y

]

Fig.1. A Simple four-bar linkage.

The dynamic force analysis problem was solved using the matrix method by reducing it to one
requiring static analysis. For this purpose, D’Alembert’s Principle which states that the inertia
forces and couples, and the external forces and torques on the body together give statically
equilibrium, was considered. The inertia forces Fgi’s and inertia moments Tg;i’s are given by,

Fyi =—miay (1)
Ty =—liay (2)
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where, m; is the mass of the link i, I; is the moment of inertia about an axis passing through the
centre of mass gi and perpendicular to plane of rotation of the link i, ag and « are the

acceleration and angular acceleration of the centre of mass of the i link respectively.

Fig.2. The Free-body diagrams of (a) Link 2(crank/input link) (b) Link 3(coupler) (c)
Link 4(follower link)

Given position, velocity, acceleration, and inertia properties such as mass and mass moment of
inertia for each moving link of a four-bar linkage, force analysis for the linkage can be
performed.

From the free body diagrams (Fig.2.) three static equilibrium equations, in terms of forces in the
X and Y directions and moment about the center of gravity of the link, can be written for each
link. For link 2, we get

Fiox + Faox + Fgax =0 3)
~Myg + Frpy + Fapy + Fypy =0 (4)
T —TyFp + (1 —1g)Fp + Ty, =0 5)

where, 1y, =Ty, exp (i(@2 +52)) IS the position vector from joint A to the center of gravity of link

2. F, and F;, are the joint forces acting on link 2. Fy, and T, are the inertia force and inertia
moment of link 2. m, is the mass of link 2 and Ts is the driving torque. Similarly for link 3, we
get
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Fasx + Faax + Fgax =0 (6)

T3Py + (1 —1y3)Fys + T3 =0 (8)

where, ry; =ry;exp (i(6?3 +53)) is the position vector from joint B to the center of gravity of link
3. Fy; and F,; are the joint forces acting on link 3. Fy; and T,; are the inertia force and inertia
moment of link 3. m, is the mass of link 3. Similarly for link 4, we get

Faax + Fay + Fg4x =0 ©)
—lgaFuy + (1 = 1g)Fay +Tgy + T, =0 (11)

where, 1y, =r,,exp (i (A +54)) is the position vector from joint D to the center of gravity of link
4. R, and F;, are the joint forces acting on link 4. F,, and T,, are the inertia force and inertia
moment of link 4. m, is the mass of link 4 and T, is the torque of external load.

The equations (5), (8), and (11) can be expressed as,

TS - rg2 COS(@Z + 52)F12y + rg2 Sin(ez + 52)F12X + (r2 COS 92 - rg2 COS(@Z + 52))F32y

(12)
= (r,5in 6, 1, €0S(6, + &,) JFap, + T, =0
115 COS(6, + 3;) Fia, + 1y SIN(G, + 8;) P, + (I COS 6, — 13 COS(6, + 5,) JFog,
(13)
(5N 6, =15 COS(6, + 5,) JFug, + T3 =0
_rg4 COS(04 + 54)F14y + rg4 Sln(04 + 54)F14X + (r4 COS 94 - rg4 COS(94 + 54))F34y
(14)

_(r4 Sln 94 - rg4 COS(94 + 54))F34X +Tg4 = 0

Here, it was taken into account that F, = —F, and F;, =—F;, . Thus the equations (3 -11) can be

written as nine linear equations in terms of nine unknowns. They can be expressed in a symbolic
form

Ax=Db (15)

where, x = the transpose of (F,,, F.,, Fas, Fsy. Faux Faay Fuux Fisy Ts ) @nd is a vector consisting of
the unknown forces and input  torque, b = the transpose of
(Fyas Fyay =My Tyos Fyaus Fyay =My Tya Fyax =My Ty +T;)  and is a vector that contains

external load plus inertia forces and inertia torques. And the matrix ‘A’ which is a 9x9 matrix, is
found to be
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1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
I,z SN —r,,C0s | I,siné, —1,C0s 6, 0 0 0 0 1
(0, +6,) (6, +35,) | —Ty2 08 +1,, COS
(6, +0,) (0, +0,)
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 Fya SIN —r,cos | sing, | —r;cos6, 0 0 0
(65 +03) (65 +0;) | ~FgsCOS | +Fg3COS
(65 +03) | (65+05)
0 0 0 0 T 0 T 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 —r,sing, | r,cos6, | ry,sin —r,,cos | O
+1,4C0S | +1,5¢08 | (6, +5,) | (6, +3),)
(0,+6,) | (6,+0,)

Solution procedure

A large number of inputs are required from the user, viz. link length hs of the four links, their
masses, radius of gyration and departures of the centre of mass from the link positions (i.e.
angle &), input angle, initial angular velocity, angular acceleration and the external load torque.

The procedure followed for solving the dynamic force analysis using the above formulated

matrix method is as follows:
1. Once the inputs were taken, the link lengths were checked for feasibility.

2. When found to be feasible, the other angles (&) were computed. It was found that two

sets of solutions/orientations are possible.
3. Angular velocities and accelerations were calculated for both the possible orientations,

which were used in the calculation of the inertia forces and couples.

4. After this the matrices ‘A’ and ‘b’ were computed. Similarly, matrices ‘C’ and‘d’ were
computed for the second orientation.

5. The solution sets X and Y { = the transpose of (F,, F,, Fos Fosy Fasx Faay Fun Fiay To)

vectors consisting of the unknown forces and input torque were obtained by the following

formulae,
X =AM

Y=C'd

(16)
(17)

The MATLAB code generated for the simulation of the above problem is shown below.

-(Code developed by Pritish Ranjan Parida(02010334), as part of assignment in ME308)
$DYNAMIC FORCE ANALYSIS OF FOUR-BAR MECHANISM

$TAKING INPUTS FROM THE USER FOR THE FOUR-BAR MECHANISM

input ('enter the length of the link AB : ');

input ('enter the length of the link BC : '");

input ('enter the length of the 1link CD : ');

input ('enter the length of the link DA(fixed link) : '");

Q0 0w
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ma = input('enter the mass of link AB 'Y

mb = input('enter the mass of link BC ')

mc = input('enter the mass of link CD ")

ka = input('enter the radius of gyration of link AB ")

kb = input('enter the radius of gyration of link BC ")

kc = input('enter the radius of gyration of link CD ")

rga = input('enter the magnitude of the p.v. of the c.g. of link AB from the
fixed pivot A )

rgb = input ('enter the magnitude of the p.v. of the c.g. of link BC from the
pivot B )

rgc = input ('enter the magnitude of the p.v. of the c.g. of link CD from the
fixed pivot D '),

deltaa = input('enter the deviation angle of the p.v. of the c.g. of AB from
the p.v. of pivot B ")

deltab = input ('enter the deviation angle of the p.v. of the c.g. of BC from
the p.v. of pivot C(wrt B) ),

deltac = input ('enter the deviation angle of the p.v. of the c.g. of CD from
the p.v. of pivot C(wrt D) '),

thetaa = input ('enter the input angle (angle between AB and AD) in degrees
")

omegaa = input ('enter the angular velocity of link AB ")

alphaa = input ('enter the angular acceleration of the link AB Y

Tl = input ('enter the load torque ')

$CONVERTING DEGREES TO RADIANS AND CHECKING FOR FEASIBILITY

thetaa = 3.1415926*thetaa/180;

K = ((a*a) - (b*b) + (c*c) + (d*d))/2;

P =K - (a*(d-c)*cos(thetaa)) - (c*d) ;

Q = -2*a*c*sin(thetaa);

R = K - (a*(dtc) *cos(thetaa)) - (c*d);

flag=0;

if ((Q*Q - 4*P*R)<0) disp ('wrong values of the link lengths'); flag=1l;
end

$CALCULATION OF OTHER ANGLES

while (flag==0)

thetacl = 2*atan( ((-1*Q) + sgrt(Q*Q - 4*P*R))/(2*P));

thetac2 = 2*atan( ((-1*Q) - sgrt(Q*Q - 4*P*R))/(2*P));

if (thetacl<=0)

thetacl = 2*atan( ((-1*Q) + sgrt(Q*Q - 4*P*R))/(2*P)) + 3.1415926;

end

if (thetac2<=0)

thetac2 = 2*atan( ((-1*Q) - sgrt(Q*Q - 4*P*R))/(2*P)) + 3.1415926;

end

thetabl = asin( ((c*sin(thetacl)) - (a*sin(thetaa)))/b) ;

thetab2 = asin( ((c*sin(thetac2)) - (a*sin(thetaa)))/b) ;

$CALCULATION OF ANGULAR VELOCITIES

omegabl (-1*a*omegaa*sin (thetacl - thetaa))/ (b*sin(thetacl - thetabl));
omegab2 = (-l*a*omegaa*sin(thetac?2 - thetaa))/(b*sin(thetac2 - thetab2));
omegacl = (-l*a*omegaa*sin(thetabl - thetaa))/(c*sin(thetacl - thetabl));
omegac?2 = (-l*a*omegaa*sin(thetab2 - thetaa))/(c*sin(thetac2 - thetab?2));

$CALCULATION OF ANGULAR ACCELERATIONS
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alphabl = ((-1*a*alphaa*sin(thetacl - thetaa)) + (a*omegaa*omegaa*cos (thetacl
-thetaa)) + (b*omegabl*omegabl*cos(thetacl - thetabl)) -
(c*omegacl*omegacl) )/ (b*sin (thetacl - thetabl));

alphab2 = ((-1l*a*alphaa*sin(thetac2 - thetaa)) + (a*omegaa*omegaa*cos (thetac?2
-thetaa)) + (b*omegab2*omegab2*cos (thetac2 - thetab2)) -
(c*omegac2*omegac?) )/ (b*sin (thetac2 - thetab2));

alphacl = ((-l*a*alphaa*sin(thetabl - thetaa)) + (a*omegaa*omegaa*cos (thetabl
-thetaa)) + (b*omegabl*omegabl) - (c*omegacl*omegacl*cos (thetacl -
thetabl)))/(c*sin (thetacl - thetabl));

alphac2 = ((-l*a*alphaa*sin(thetab2 - thetaa)) + (a*omegaa*omegaa*cos (thetab?2
-thetaa)) + (b*omegab2*omegab2) - (c*omegac2*omegac2*cos (thetac2 -
thetab2)))/(c*sin (thetac2 - thetab2));

$CALCULATION OF THE ELEMENTS OF THE 'b' MATRIX

bl = -1*ma*rga* (alphaa*cos (thetaa + deltaa - (3.1415926/2)) +
omegaa*omegaa*cos (thetaa + deltaa));
b2 = ma*9.81 - ma*rga* (alphaa*sin(thetaa + deltaa - (3.1415926/2)) +

omegaa*omegaa*sin (thetaa + deltaa));
b3 = ma*ka*ka*alphaa;

b4 = -1*mb*rgb* (alphabl*cos (thetabl + deltab - (3.1415926/2)) +
omegabl*omegabl*cos (thetabl + deltab));
b5 = mb*9.81 - mb*rgb* (alphabl*sin (thetabl + deltab - (3.1415926/2)) +

omegabl*omegabl*sin (thetabl + deltab));
b6 = mb*kb*kb*alphabl;

b7 = -1*mc*rgc* (alphacl*cos (thetacl + deltac - (3.1415926/2)) +
omegacl*omegacl*cos (thetacl + deltac));
b8 = mc*9.81 - mc*rgc* (alphacl*sin(thetacl + deltac - (3.1415926/2)) +

omegacl*omegacl*sin (thetacl + deltac));
b9 = mc*kc*kc*alphacl - T1;

$CALCULATIONS OF THE ELEMENTS OF THE 'A' MATRIX
A31 = rga*sin(thetaa + deltaa);

A32 = -l*rga*cos (thetaa + deltaa);

A33 = a*sin(thetaa) - rga*cos(thetaa + deltaa);
A34 = rga*cos(thetaa + deltaa) - a*cos(thetaa);
A39 = 1;

A63 = rgb*sin(thetabl + deltab);

A64 = -1*rga*cos (thetabl + deltab);

A65 = b*sin(thetabl) - rgb*cos(thetabl + deltab);
A66 = rgb*cos (thetabl + deltab) - b*cos(thetabl);
A95 = rgc*cos(thetacl + deltac) - c*sin(thetacl);
A96 = c*cos(thetacl) - rgc*cos(thetacl + deltac);
A97 = rgc*sin(thetacl + deltac);

A98 = -l*rgc*cos (thetacl + deltac);

B = [bl b2 b3 b4 b5 b6 b7 b8 bI];

A=[10-1000000;010-100020 0;A31 A32 A3 A34 0000 1;0010
-1 0000;,00010-10020;00 A63 A64 A65 A66 0 0 0;0 00 01 01 O00;00
0001010;0000 A9 AS96 A97 AS8 01];

$CALCULATION OF THE FIRST SOLUTION

X = (inv (A))*B';

thetall2 = (atan(X(2,1)/X(1,1)))*180/3.1415926; if (X(1,1)<0) thetall2 =
(atan(X(2,1)/X(1,1)) + 3.1415926)*180/3.1415926; end

thetal23 = (atan(X(4,1)/X(3,1)))*180/3.1415926; 1if (X(3,1)<0) thetal23 =
(atan(X(4,1)/X(3,1)) + 3.1415926)*180/3.1415926; end
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theta134 = (atan( ) /X(5,1)))*180/3.1415926;
(atan(X(6,1) /X ) + 3.1415926)*180/3.1415926;
theta114 = (atan( ) /X(7,1)))*180/3.1415926;
(atan (X 1) /X (7 )) + 3.1415926)*180/3.1415926;

$CALCULATION OF THE ELEMENTS OF THE
dl =
omegaa*omegaa*cos (thetaa + deltaa));
dz =
omegaa*omegaa*sin (thetaa + deltaa));

d3 = ma*ka*ka*alphaa;

d4 = -1*mb*rgb* (alphab2*cos (thetab2 + deltab -
omegab2*omegab2*cos (thetab2 + deltab));

ds =
omegab2*omegab2*sin (thetab2 + deltab));

d6 = mb*kb*kb*alphab?2;

d7 = -1*mc*rgc* (alphac2*cos (thetac2 + deltac -
omegac2*omegac2*cos (thetac2 + deltac));

d8 = mc*9.81 - mc*rgc*
omegac2*omegac2*sin (thetac2 + deltac));
d9 = mc*kc*kc*alphac2 - T1;

'd' MATRIX

$CALCULATIONS OF THE ELEMENTS OF THE
C31 = rga*sin(thetaa + deltaa);

-1*ma*rga* (alphaa*cos (thetaa + deltaa - (3.

ma*9.81 - ma*rga* (alphaa*sin(thetaa + deltaa -

mb*9.81 - mb*rgb* (alphab2*sin (thetab2 + deltab -

(alphac2*sin (thetac2 + deltac -

'C' MATRIX

1f (X (5
end
1f(X (7,
end

1)<0)

1)<0)

1415926/2))

(3.1415926/2))

(3.1415926/2))

C32 = -1*rga*cos(thetaa + deltaa);

C33 = a*sin(thetaa) - rga*cos(thetaa + deltaa);
C34 = rga*cos(thetaa + deltaa) - a*cos(thetaa);
C39 = 1;

C63 = rgb*sin(thetab2 + deltab);

C64 = -1*rga*cos (thetab2 + deltab);

C65 = b*sin(thetab2) - rgb*cos(thetab2 + deltab);
C66 = rgb*cos (thetab2 + deltab) - b*cos(thetab2);
C95 = rgc*cos(thetac2 + deltac) - c*sin(thetac2);
C96 = c*cos(thetac?2) - rgc*cos(thetac2 + deltac);
C97 = rgc*sin(thetac2 + deltac);

C98 = -1*rgc*cos(thetac2 + deltac);

D = [dl d2 d3 d4 d5 d6 d7 d8 d91;
cC=1[10-1000000;010
-10000;00010
0001010;0000C9 C9 C97 C98 01,

$CALCULATION OF THE SECOND SOLUTION

Y = (inv(C))*D"';

theta212 = (atan(Y )/Y(1,1)))*180/3.1415926;
(atan (Y 1)/Y (1, l)) + 3.1415926)*180/3.1415926;
theta223 = (atan(Y 1)/Y(3,1)))*180/3.1415926;
(atan(Y (4,1) /Y (3, l)) + 3.1415926)*180/3.1415926;
theta234 = (atan(Y 1)/Y(5,1)))*180/3.1415926;
(atan(Y (6,1) /Y (5, l)) + 3.1415926)*180/3.1415926;
theta214 = (atan(Y 1)/Y(7,1)))*180/3.1415926;
(atan (Y 1) /Y (7, l)) + 3.1415926)*180/3.1415926;

$DISPLAY OF RESULTS
disp('There are two sets of solutions possible
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1f(Y (1,
end
1f(Y
end
1if(Y (5
end

1f (Y (7
end

1)<0)
(3,1)<0)
1)<0)

1)<0)

')

thetal34

thetalld

(3.1415926/2)) +

+

(3.1415926/2)) +

+

(3.1415926/2)) +

theta2l2

theta223

theta234

theta2l4

-1 0000 0;C31 C32C33C3400001;0010
-1 0 0 0;0 O C63 C64 C65 C66 0 0 0;0 0001 010 0;00



disp('Set I : '");

disp('X [Fle Fl2y F23x F23y F34x F34y Fldx Fl4y Ts] ');disp(X);
disp('F = '");disp(sqrt(X(1,1)"2 + X(2,1)"2));

disp('theta F1l2 = '");disp(thetall?2);

disp('F23 = '");disp(sqrt(X(3,1)"2 + X(4,1)"2));

disp('theta F23 = ');disp(thetal23);

disp('F34 = '"); disp(sqrt(X(S,l)A2 + X(6,1)72));

disp('theta F34 = ') ;disp(thetal34);

disp('Fl4 = '"); dlsp(sqrt(X(7,l)A2 + X(8,1)72));

disp('theta F14 = ');disp(thetall4);

disp('Set II ")

disp ('Y = [Fl2x Fl2y F23x F23y F34x F34y Fl4x Fl4y Ts] ');disp(Y);
disp('F12 = '");disp(sqrt(Y(1,1)"2 + Y(2,1)"2));

disp('theta F12 = ');disp(theta2l2);

disp('F12 = ") ;disp(sqrt(Y(3,1)"2 + Y(4,1)"2));

disp('theta F23 = ');disp(theta223);

disp('F1l2 = '");disp(sgrt(Y¥(5,1)"2 + Y(6,1)"2));

disp('theta F34 = ') ;disp(theta234);

disp('F1l2 = '");disp(sqrt(Y¥(7,1)"2 + Y(8,1)"2));

disp('theta F14 = ');disp(theta2l4);

flag=flag+2;
end
$SEND OF CODE

Dynamic analysis of Slider Crank Mechanism

X =displacement of piston from inner dead center
r[(n+1)—(ncos S +cosb)]

_ rz(l—cosé?)+( —+/n? —sinzé?jb

If the connecting rod is very large n?is very large, and hence +/n? —sin? & will approach n.

The equation converts to
X =r(l-cos6)

39



This is the expression for a SHM. Thus the piston executes SHM when connecting rod is large.

\elocity of Piston:-

y=0x_dx do
dt dé@ dt
r sin20  /
=rw’'sin @+

< 2\/n2—sin29;o

if n? is large compared to sin® @ then

V= ra)Zin 0+ sin 26/
< 2n ¥
sin26 .
If can be neglected (when n is quite less) then
V=rwsind
Acceleration of Piston:-
= dv _ dv d@
dt de dt
=i,erD in@ sin267 ,Ycos6'+00820/

0< EF " 2n %a):rwzg n ¢

If nis very large a = ro°cosé which is SHM

When 6=0° i.e.at IDC a=ro’ %+ 1ﬁD
When 6=180° i.e. at ODC a=re? %u 153@

At 8 =180° when the direction of motion is reversed a =rw? % 15DE

Angular Velocity and Angular Acceleration of Connecting rod:-

., sind
smﬁ_—n

a
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Differentiating dp_ coso 0]
dt ncosp

cosd cos @
=> 0. =0 =

i nlwan_sinzg \/nz—sinzﬁ
n

o, = angular acceleration of the connecting rod

Y 2_ /
_da _do d0__ og.o M1 G72) o0
it do ot {n*=sin0)"" 7

The negative sign indicates that the sense of angular acceleration of the rod is such that it tends
to reduce the angle 5.

Net or Effective force on the Piston:-

A = area of the cover end

A, = area of the piston end

P, = pressure of the cover end

P, = pressure of the piston end

m = mass of the reciprocating parts

Force on the piston  F, =RA -PA,
c0s20 ]

N

Net or Effective force on the piston F = F-FK

2 c0sO+

Inertia force K =ma=mro

Crank Effort:-

It is the net effort (force) applied at the crank pin perpendicular to the crank, which gives the
required turning moment on the crankshaft.
F. = crank effort

F. = force on the connecting rod
As Rr=Frsin(@+ f)

= F =Fsin(@+p)=_F_sin(@+p)
cosf
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T=Fr

F .
cosﬂSIn(0+'B)r

Fr
cos

(sin@cos f + cossin f)

= Fr%in @+cosdsin LE
0 cosf

] : H
=Frrpin @+ sin 26

T
u 24/n? —sin? @ 0

=m
rsin(@+ ) =0D cos
and myb=m,d 0+5) P

T=FRr

F .
057 rsin(@+ g)

F
= w (ODcos p)

= F(OD)

Point masses at two points, if it is ensured that the two masses together have the same dynamic
properties.

I L
G
Bl @ | A
< b :I: a >
g (@ [ ) A

@]
I b ’!‘ d 4"

The two member will be dynamically similar if
(1 The sum of two masses is equal to the total mass
(i) The combined centre of mass coincides with that of the rod
(iif)  The moment of inertia of the two point masses about perpendicular axis through their
combined centre of mass is equal to that of the rod.
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mbb=mdd
d
=M
b
M =My

Let m be the total mass of the rod and one of the masses be located at the small end B. Let the
second mass be placed at D and

m, = mass at B
m, =mass at D

I L
G
B | ‘ LA
< b :I: a >
G D
B K ) @1 A
h b > d Ab‘
Take BG =b
DG=d
Then my+my; =m
and mgb=m,d
=m :m_d and m :m_b
®*  b+d ¢ b+d
| =myb®+m,d?
:mib%m b d?
b+d b+d
=mbd = mK?
= K?=hd

Instead of keeping the mass at D if we keep at A the first two conditions can be satisfied as
follows.
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Then my+m, =m

and mb=m,a

:mbzmi and ma:mL
b+a b+a

O . O

But I'=mab, assuming a>d, 1>l

B A

So by considering the two masses at A and B instead of B and D, the inertia torque is increased
from the actual value of T=I«a

=mbe, [(@+b)—(b+d)]

=mbe, (I -L)
This much torque must be applied to the two mass system in the opposite direction to that of
angular acceleration to make the system dynamically equivalent to that of the actual rod.

The correction couple will be produced by two equal, parallel, and opposite forces F, acting at

the gudgeon pin and crank pin ends perpendicular to the line of stroke. Force at B is taken by the
reaction of guides.

&
«

Torqgue at the crank shaft due to force at A or correction torque,

44



T.=F,rcosd
AT r oSO = mbe (I —L) cos& _ mba,(I-L)cosé _ mber (1 - L) cosé

~cosf % cosf ol /Z_anto JnZ —sin26
n

Also due to weight of mass at A, a torque is exerted on the crankshaft which is given by
T, =(m,g)rcoséd

In case of vertical engines, a torque is also exerted on the crankshaft due to weight at B and can
be given by,

] : ]
(m,g)rcsin@+ sin 26

o s -
The net torque on the crank shaft will be vectorial sum of the torquesT,T,, T, and T, .
Examplel: The connecting rod of an IC engine is 450 mm long and has a mass of 2 kg. The
center of the mass of the rod is 300 mm from the small end and its radius of gyration about an
axis through this center is 175 mm. The mass of the piston and the gudgeon pin is 2.5 kg and the
stroke is 300 mm. The cylinder diameter is 115 mm. Determine the magnitude and direction of
the torque applied on the crankshaft when the crank is at 40 degree and the piston is moving
away from the inner-dead center under an effective gas pressure of 2 N/mm?. The engine speed
is 1000 rpm.
Solution:
n =1/r =450/150 = 3.

L

Inertia forces due to reciprocating masses:

Divide the mass of the rod into two dynamically equivalent parts
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Mass of the crank pin, ma=(mb) /| =2x300/450 where m is mass of the rod
=1.333 kg.

Mass at the gudgeon pin, mp = 2-1.3333= 0.6667 kg.

Total mass of the reciprocating parts, m=2.5+0.6667=3.16667 kg

Inertia force due to reciprocating masses, Fp=mro&9S 0+cos20( 1

N 0
= 3.1667 x0.15% (2 x 1000/60)? (cos40+(cos80)/3)
= 4290.6 N.

Force on the piston, Fp= 2x10%x /4 x (0.115)? = 20773.8 N
Net force, F =Fy — Fp

Torque due to this force, T = Frgn 0+ sin26
, 0 2:7n2—sin26?E
T =2004.7 Nm
Torque to consider the correction couple:
Y n*-1 /

a, =—-w?*sing;

‘ i “sin 9) 3’2°fo

=-2240.3 rad/s?.
L = b+d = b+k?b = 402.08 mm.
T, =mbea, (1 - L) __coso where m is mass of the rod
n?—sin? @

=-16.84 Nm
Torque due to mass at A:
T, =m,grcosé
=1.503 Nm.
Total torque on the crankshaft:
Net torque on the crank shaft =T — T¢ + Ta
=2004.7+16.84+1.503
=2021.1 Nm. (answer)

Example 2: The connecting rod of a vertical reciprocating engine is 2 m long and has a weight
of 300 kg. The mass center is 825 mm from big end bearing. When suspended as pendulum from
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the gudgeon pin axis, it makes 10 complete oscillations in 25 sec. Calculate radius of gyration of
the connecting rod. The crank is 400 mm long and rotates at 200 rpm. When the crank has turned
through 45 degree from the top dead center and the piston is moving downwards, analytically

and graphically find the torque acting at the crankshaft.

Solution:
n = I/r =2000/400 = 5.

Inertia forces due to reciprocating mass:

Divide the mass of the rod into two dynamically equivalent parts

Mass of the crank pin, ma=m b | = 300x(2-0.825)/2 (where m is

mass

of the rod)
=176.35Kkg.
Mass at the gudgeon pin, mp = 300-176.25 = 123.75 kg.
Inertia force due to reciprocating masses, F = m ro: E 60s 8 + €03 ZHHD
| n ]
F=123.75x0.4x (21 x200/60)? (cos45+(cos90)/5)

F=15348 N.

NN

. 0. 2
Torque due to this force, T = FFHSIH6’+ sin2¢

N 24/n" —sin" @

T =4967.6 Nm

[]
0
[]

Torque to consider the correction couple:
We know that b+d = b+k?/b =L
b=2-0.825=1.175m

and t = Zn\/E: 25/10
g

D L=1553m
Now, 1.175 + k#/1.175 = 1.553
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D k=0.6665m.

o =—w?sin O L S
° @ Zsin B) 3’2}0
=-61.36 rad/s.
T, =mba, (1 -L) __o0s0 where m is mass of the rod.
Jn? —sin? g
=-1381.2 Nm

Torqgue due to weight of mass at A:
T, =m,grsinéd
=489 Nm.

Torqgue due to weight of mass at B:

T=m gan0+ &D
’ @D 2\/n2—sin2¢9ﬁ

=392 Nm
Total inertia torque on the crankshaft:
Total inertia torque on the crankshaft = 4967.6-(-1381.2)-489-392

=5466.7 Nm.
Graphical method:
Klein’s construction is shown in the following diagram.
From the diagram,
g0 =0.3282m, IY =1.0318 m, IX =2.0952 m, IP = 2.2611 m, IC = 2.7977 mm.

We know that,
Fc = mco»? (gO) = 300 (20.94)2x0.3282 = 43173.1 N

Wc =300%x9.81 =2943 N

Now, take the moment of the forces about the point I.

Fr x (IC) = Fc x (1Y) — Wex (I1X)

From this we can calculate the unknown Fr
Fr=13714N

Inertia torque, T=Fy x r = 13705 x 0.4 = 5487 Nm.

48



49



Summery
In this chapter the following concepts are learned

Inertia forces and couples

Offset inertia force

Dynamically equivalent system

Determination of radius of gyration of crankshaft by method of oscillation

Piston effort, crank effort

Dynamic force analysis of mechanisms using graphical method, vector method and virtual work
principle

Exercise Problems

1. Determine the torque required to drive link AB of the four bar mechanism in the position
shown in figure below under the action of forces F» and Fz with magnitudes of 50 N and 75 N,
respectively. Force F> acts in the horizontal direction and Fs acts as shown in the figure. Weight
of links AB, BC and CD are 5 N, 7.5 N and 8 N respectively. AB=30 cm, BC=40 cm, CD=50 cm
and the fixed link AD=75 cm and CE=15 and CF= 20cm. Crank AB is rotating at 100rpm in
clockwise direction, Use both graphical and analytical methods

2. Assuming F> = F3 = 0, determine the torque required to overcome the inertia forces of the
links of the four bar mechanism in problem 1 if (a) link AB accelerated at the rate of 5 rad/sec?,
(b) decelerated at the rate of 5 rad/sec?. Use virtual work principle, graphical and vector method
to solve the problem.

3 The connecting rod of a reciprocating compressor is 2 m long and has a weight of 300 kg. The
mass center is 825 mm from big end bearing. The radius of gyration of the connecting rod is 0.7
m. The crank is 420 mm long and rotates at 250 rpm. When the crank has turned through 225
degree from the inner dead center and the piston is moving towards left, analytically and
graphically find the torque acting at the crankshaft. Consider mass of crank, connecting rod and
piston to be 5 kg, 4 kg and 2 kg respectively.

4. Figure below shows a mechanism used to crush rocks. Considering mass of link AB, BC and
CDE to be 0.8, 1 and 1.5 respectively, in the position shown, determine the torque required to
drive the input link AB when the crushing force acting in the horizontal direction is 5000N.
Here, AB = 50 cm, BC=100 cm, CD=120 cm and the fixed link AD=150 cm and CE=25 cm and
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the angle CED of the ternary link CED is 90% Assuming link AB is rotating with 500 rpm in
clockwise direction, use (a) graphical method, (b) analytical method and (c) virtual work
principle to determine the bearing forces and power required by the motor.

C

0
A 45

o1



