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Figure 1: Illustration of inertia force (i) a translating body (ii) a compound pendulum, (iii) inertia force 

and couple on compound pendulum.

Consider a body of mass m moving with acceleration a as shown in figure 1(i). According to D’Alembert

Principle, the body can be brought to equilibrium position by applying a force equal to Fi  ma and in a

direction opposite to the direction of acceleration. Figure 1 (ii) shows a compound pendulum of 

mass m, moment of inertia Ig about center of mass G while rotating at its center of mass has a

Figure 1(iii) shows the inertia force andlinear acceleration of a and angular acceleration of  . 

couple acting on the pendulum.

Equivalent off-set Inertia force

Figure 2: (i) Illustration of equivalent off-set inertia force

Figure 2(i) shows a body with inertia force Fi  and inertia couple Ic . The couple can be replaced by two

parallel forces (equal in magnitude and opposite in direction) acting at G and H respectively as shown in 

Figure 2(ii). If we consider their magnitude of these forces same as that of inertia force, then the equal
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m

CHAPTER 2 DYNAMIC FORCE ANALYSIS

When the inertia forces are considered in the analysis of the mechanism, the analysis is known as

dynamic force analysis. Now applying D’Alembert principle one may reduce a dynamic system into an

equivalent static system and use the techniques used in static force analysis to study the system.

Inertia force and couple

Fi  ma
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and opposite forces at point G will cancel each other and the resulting force will be a force at H which is

in the same direction as inertia force. If h is the minimum distance between the force at G and H, then

h 
Ic

Fi

where Ic and Fi are magnitude of Ic and Fi respectively. This force acting at H is known as equivalent

offset inertia force. For the compound pendulum shown in Figure 1(iii), the equivalent offset inertia force

is shown in Figure 2(iii).

Dynamic force analysis of four bar mechanism

Let us study the four bar mechanism where m2 ,m3 and m4 are mass of link 2,3 and 4 respectively. We

have to find the torque required at link 2 for dynamic equilibrium when an external force F4 acts on link

4 as shown in figure 3. Now for dynamic force analysis the following steps may be followed.

External force

T
F4

Figure 1: Four bar mechanism showing external and constraint forces

 Draw the acceleration diagram or use any analytical method to determine acceleration

 Determine angular acceleration of link 2,3 and 4.

 Determine linear acceleration of center of mass ( agi i  2,3, 4 ) of link 2 3 and 4 .

 The magnitude of inertia force of link i (i  2,3 or 4) can be determined by multiplying mass of 

link i with the corresponding acceleration of the center of mass.

 The direction of the inertia force is opposite to the direction of the acceleration.

 Determine the magnitude of inertia couple which is equal to Iii

 The direction of the inertia couple is opposite to that of angular acceleration.

 Replace the inertia force and couple by the equivalent offset inertia force for each link.

 Treat these offset inertia force as external force and follow the procedure for static force analysis.

 One may use either super-position principle or principle of virtual work to find the required 

torque for equilibrium.

Fgi  miagi
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Dynamic Force Analysis of a Four bar Mechanism using Matrix Method

In the four bar mechanism shown in Figure 1, Link 1 is the ground link (sometimes called the

frame or fixed link), and is assumed to be motionless. Links 2 and 4 each rotate relative to the

ground link about fixed pivots (A and D). Link 3 is called the coupler link, and is the only link

that can trace paths of arbitrary shape (because it is not rotating about a fixed pivot). Usually one

of the "grounded links" (link 2 or 4) serves as the input link, which is the link which may either

be turned by hand, or perhaps driven by an electric motor or a hydraulic or pneumatic cylinder. If

link 2 is the input link, then link 4 is called the follower link, because its rotation merely follows

the motion as determined by the input and coupler link motion. If link 2 is the input link and its

possible range of motion is unlimited, it is called a crank, and the linkage is called a crank-

rocker. Crank-rockers are very useful because the input link can be rotated continuously while a

point on its coupler traces a closed complex curve.

Fig.1. A Simple four-bar linkage.
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The dynamic force analysis problem was solved using the matrix method by reducing it to one

requiring static analysis. For this purpose, D’Alembert’s Principle which states that the inertia

forces and couples, and the external forces and torques on the body together give statically

equilibrium, was considered. The inertia forces Fgi’s and inertia moments Tgi’s are given by,

Fgi  miagi

Tgi  I igi

(1)

(2)



where, mi is the mass of the link i, Ii is the moment of inertia about an axis passing through the

are thecentre of mass gi and perpendicular to plane of rotation of the link i, agi and gi

acceleration and angular acceleration of the centre of mass of the ith link respectively.

(c)
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Fig.2. The Free-body diagrams of (a) Link 2(crank/input link) (b) Link 3(coupler)

Link 4(follower link)

Given position, velocity, acceleration, and inertia properties such as mass and mass moment of

inertia for each moving link of a four-bar linkage, force analysis for the linkage can be

performed.

From the free body diagrams (Fig.2.) three static equilibrium equations, in terms of forces in the

X and Y directions and moment about the center of gravity of the link, can be written for each

link. For link 2, we get

F12x  F32x  Fg 2x  0

m2g  F12 y  F32 y  Fg2 y  0

Ts  rg 2F12  (r2  rg 2 )F32 Tg 2  0

(3)

(4)

(5)

where, rg 2  rg 2 expi(2 2 ) is the position vector from joint A to the center of gravity of link

2. F12  and F32  are the joint forces acting on link 2. Fg 2 and Tg 2 are the inertia force and inertia

moment of link 2. m2 is the mass of link 2 and Ts is the driving torque. Similarly for link 3, we 

get
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F23x  F43x  Fg3x  0

m3g  F23y  F43y  Fg3 y  0

rg3F23  (r3  rg 3 )F43 Tg3  0

(6)

(7)

(8)

where, rg3  rg3 expi(3 3) is the position vector from joint B to the center of gravity of link

3. F23  and F43  are the joint forces acting on link 3. Fg3 and Tg 3 are the inertia force and inertia

moment of link 3. m3 is the mass of link 3. Similarly for link 4, we get

F34x  F14x  Fg4x  0

m4g  F34 y  F14 y  Fg 4 y  0

rg4F14  (r4  rg 4 )F34 Tg 4 T1  0

(9)

(10)

(11)

where, rg 4  rg 4 expi(4 4 ) is the position vector from joint D to the center of gravity of link

4. F14    and F34  are the joint forces acting on link 4. Fg 4 and Tg 4 are the inertia force and inertia

is the torque of external load.moment of link 4. m4 is the mass of link 4 and T1

The equations (5), (8), and (11) can be expressed as,

(12)

(13)

Ts  rg 2 cos(2 2 )F12 y  rg 2 sin(2 2)F12x  r2 cos2  rg 2 cos(2 2)F32 y

r2 sin2  rg2 cos(2 2)F32x Tg2  0

rg 3 cos(3 3 )F23 y  rg 3 sin(3 3)F23 x r3 cos3  rg 3 cos(3 3 )F43 y

r3 sin3  rg 3 cos(3 3 )F43x Tg 3  0

rg4 cos(4 4 )F14 y  rg 4 sin(4 4)F14x r4 cos4  rg 4 cos(4 4)F34 y

r4 sin4  rg 4 cos(4 4 )F34x Tg 4  0
(14)

and  is  a vector  that contains

external load plus inertia forces and inertia torques. And the matrix ‘A’ which is a 9x9 matrix, is 

found to be

Here, it was taken into account that Fijx  F jix and Fijy  F jiy . Thus the equations (3 -11) can be

written as nine linear equations in terms of nine unknowns. They can be expressed in a symbolic

form

Ax  b (15)

where, x = the transpose of ( F12 x ,F12 y ,F23x ,F23 y , F34 x ,F34 y ,F14 x ,F14 y ,Ts ) and is a vector consisting of 

the unknown forces and input torque, b = the transpose of

( Fg 2 x , Fg 2 y m2 g ,Tg 2 , Fg 3x , Fg 3 y m3g ,Tg 3 , Fg 4 x m4 g ,Tg 4 T1 )
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Solution procedure

A large number of inputs are required from the user, viz. link length  hs of the four links, their

masses, radius of gyration and departures of the centre of mass from the link positions (i.e. 

angle ), input angle, initial angular velocity, angular acceleration and the external load torque. 

The procedure followed for solving the dynamic force analysis using the above formulated

matrix method is as follows:
1. Once the inputs were taken, the link lengths were checked for feasibility.

2. When found to be feasible, the other angles ( ) were computed. It was found that two 

sets of solutions/orientations are possible.
3. Angular velocities and accelerations were calculated for both the possible orientations,

which were used in the calculation of the inertia forces and couples.

4. After this the matrices ‘A’ and ‘b’ were computed. Similarly, matrices ‘C’ and‘d’ were 

computed for the second orientation.

5. The solution sets X and Y { = the transpose of ( F12 x ,F12 y ,F23x ,F23 y , F34 x ,F34 y ,F14 x ,F14 y ,Ts )},

vectors consisting of the unknown forces and input torque were obtained by the following 

formulae,
(16)

(17)

X  A1b

Y  C 1d

The MATLAB code generated for the simulation of the above problem is shown below.

-(Code developed by Pritish Ranjan Parida(02010334), as part of assignment in ME308)
%DYNAMIC FORCE ANALYSIS OF FOUR-BAR MECHANISM

%TAKING INPUTS FROM THE USER FOR THE FOUR-BAR MECHANISM

a = input('enter the length of the link AB : ');

b = input('enter the length of the link BC : ');

c = input('enter the length of the link CD : ');

d = input('enter the length of the link DA(fixed link) : ');

1 0 -1 0 0 0 0 0 0

0 1 0 -1 0 0 0 0 0

rg 2 sin

(2 2 )

rg 2 cos

(2 2 )

r2 sin2

rg2 cos

(2 2 )

r2 cos2

rg 2 cos

(2 2 )

0 0 0 0 1

0 0 1 0 -1 0 0 0 0

0 0 0 1 0 -1 0 0 0

0 0 rg3 sin

(3 3)

rg3 cos

(3 3)

r3 sin3

rg3 cos

(3 3)

r3 cos3

rg3 cos

(3 3)

0 0 0

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 r4 sin4

rg4 cos

(4 4 )

r4 cos4

rg3 cos

(4 4 )

rg 4 sin

(4 4 )

rg 4 cos

(4 4 )

0
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ma = input('enter the mass of link AB : ');

mb = input('enter the mass of link BC : ');

mc = input('enter the mass of link CD : ');

ka = input('enter the radius of gyration of link AB : ');

kb = input('enter the radius of gyration of link BC : '); 

kc = input('enter the radius of gyration of link CD : ');

rga = input('enter the magnitude of the p.v. of the c.g. of link AB from the 

fixed pivot A : ');

rgb = input('enter the magnitude of the p.v. of the c.g. of link BC from the

pivot B : ');

rgc = input('enter the magnitude of the p.v. of the c.g. of link CD from the 

fixed pivot D : ');

deltaa = input('enter the deviation angle of the p.v. of the c.g. of AB from 

the p.v. of pivot B : ');

deltab = input('enter the deviation angle of the p.v. of the c.g. of BC from 

the p.v. of pivot C(wrt B) : ');

deltac = input('enter the deviation angle of the p.v. of the c.g. of CD from 

the p.v. of pivot C(wrt D) : ');

thetaa = input('enter the input angle (angle between AB and AD) in degrees :

');

omegaa = input('enter the angular velocity of link AB : ');

alphaa = input('enter the angular acceleration of the link AB : '); 

Tl = input('enter the load torque : ');

%CONVERTING DEGREES TO RADIANS AND CHECKING FOR FEASIBILITY

thetaa = 3.1415926*thetaa/180;

K = ((a*a) - (b*b) + (c*c) + (d*d))/2;

P = K - (a*(d-c)*cos(thetaa)) - (c*d) ; 

Q = -2*a*c*sin(thetaa);

R = K - (a*(d+c)*cos(thetaa)) - (c*d);

flag=0;

if ((Q*Q - 4*P*R)<0) disp('wrong values of the link lengths'); flag=1; 

end

%CALCULATION OF OTHER ANGLES

while(flag==0)

thetac1 = 2*atan( ((-1*Q) + sqrt(Q*Q - 4*P*R))/(2*P));

thetac2 = 2*atan( ((-1*Q) - sqrt(Q*Q - 4*P*R))/(2*P));

if(thetac1<=0)

thetac1 = 2*atan( ((-1*Q) + sqrt(Q*Q - 4*P*R))/(2*P)) + 3.1415926; 

end

if(thetac2<=0)

thetac2 = 2*atan( ((-1*Q) - sqrt(Q*Q - 4*P*R))/(2*P)) + 3.1415926; 

end

thetab1 = asin( ((c*sin(thetac1)) - (a*sin(thetaa)))/b) ; 

thetab2 = asin( ((c*sin(thetac2)) - (a*sin(thetaa)))/b) ;

%CALCULATION OF ANGULAR VELOCITIES

omegab1 = (-1*a*omegaa*sin(thetac1 - thetaa))/(b*sin(thetac1 - thetab1));

omegab2 = (-1*a*omegaa*sin(thetac2 - thetaa))/(b*sin(thetac2 - thetab2));

omegac1 = (-1*a*omegaa*sin(thetab1 - thetaa))/(c*sin(thetac1 - thetab1));

omegac2 = (-1*a*omegaa*sin(thetab2 - thetaa))/(c*sin(thetac2 - thetab2));

%CALCULATION OF ANGULAR ACCELERATIONS
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alphab1 = ((-1*a*alphaa*sin(thetac1 - thetaa)) + (a*omegaa*omegaa*cos(thetac1

-thetaa)) + (b*omegab1*omegab1*cos(thetac1 - thetab1)) -

(c*omegac1*omegac1))/(b*sin(thetac1 - thetab1));

alphab2 = ((-1*a*alphaa*sin(thetac2 - thetaa)) + (a*omegaa*omegaa*cos(thetac2

-thetaa)) + (b*omegab2*omegab2*cos(thetac2 - thetab2)) -

(c*omegac2*omegac2))/(b*sin(thetac2 - thetab2));

alphac1 = ((-1*a*alphaa*sin(thetab1 - thetaa)) + (a*omegaa*omegaa*cos(thetab1

-thetaa)) + (b*omegab1*omegab1) - (c*omegac1*omegac1*cos(thetac1 -

thetab1)))/(c*sin(thetac1 - thetab1));

alphac2 = ((-1*a*alphaa*sin(thetab2 - thetaa)) + (a*omegaa*omegaa*cos(thetab2

-thetaa)) + (b*omegab2*omegab2) - (c*omegac2*omegac2*cos(thetac2 -

thetab2)))/(c*sin(thetac2 - thetab2));

%CALCULATION OF THE ELEMENTS OF THE 'b' MATRIX

b1 = -1*ma*rga*(alphaa*cos(thetaa + deltaa - (3.1415926/2)) + 

omegaa*omegaa*cos(thetaa + deltaa));

b2 = ma*9.81 - ma*rga*(alphaa*sin(thetaa + deltaa - (3.1415926/2)) + 

omegaa*omegaa*sin(thetaa + deltaa));

b3 = ma*ka*ka*alphaa;

b4 = -1*mb*rgb*(alphab1*cos(thetab1 + deltab - (3.1415926/2)) + 

omegab1*omegab1*cos(thetab1 + deltab));

b5 = mb*9.81 - mb*rgb*(alphab1*sin(thetab1 + deltab - (3.1415926/2)) + 

omegab1*omegab1*sin(thetab1 + deltab));

b6 = mb*kb*kb*alphab1;

b7 = -1*mc*rgc*(alphac1*cos(thetac1 + deltac - (3.1415926/2)) + 

omegac1*omegac1*cos(thetac1 + deltac));

b8 = mc*9.81 - mc*rgc*(alphac1*sin(thetac1 + deltac - (3.1415926/2)) + 

omegac1*omegac1*sin(thetac1 + deltac));

b9 = mc*kc*kc*alphac1 - Tl;

%CALCULATIONS OF THE ELEMENTS OF THE 'A' MATRIX

A31 = rga*sin(thetaa + deltaa); 

A32 = -1*rga*cos(thetaa + deltaa);

A33 = a*sin(thetaa) - rga*cos(thetaa + deltaa);

A34 = rga*cos(thetaa + deltaa) - a*cos(thetaa); 

A39 = 1;

A63 = rgb*sin(thetab1 + deltab); 

A64 = -1*rga*cos(thetab1 + deltab);

A65 = b*sin(thetab1) - rgb*cos(thetab1 + deltab); 

A66 = rgb*cos(thetab1 + deltab) - b*cos(thetab1);

A95 = rgc*cos(thetac1 + deltac) - c*sin(thetac1);

A96 = c*cos(thetac1) - rgc*cos(thetac1 + deltac);

A97 = rgc*sin(thetac1 + deltac);

A98 = -1*rgc*cos(thetac1 + deltac);

B = [b1 b2 b3 b4 b5 b6 b7 b8 b9];

A = [1 0 -1 0 0 0 0 0 0;0 1 0 -1 0 0 0 0 0;A31 A32 A33 A34 0 0 0 0 1;0 0 1 0

-1 0 0 0 0;0 0 0 1 0 -1 0 0 0;0 0 A63 A64 A65 A66 0 0 0;0 0 0 0 1 0 1 0 0;0 0

0 0 0 1 0 1 0;0 0 0 0 A95 A96 A97 A98 0];

%CALCULATION OF THE FIRST SOLUTION 

X = (inv(A))*B';

theta112 = (atan(X(2,1)/X(1,1)))*180/3.1415926; if(X(1,1)<0) theta112 =

(atan(X(2,1)/X(1,1)) + 3.1415926)*180/3.1415926; end

theta123 = (atan(X(4,1)/X(3,1)))*180/3.1415926; if(X(3,1)<0) theta123 = 

(atan(X(4,1)/X(3,1)) + 3.1415926)*180/3.1415926; end



38

theta134 = (atan(X(6,1)/X(5,1)))*180/3.1415926; if(X(5,1)<0) theta134 = 

(atan(X(6,1)/X(5,1)) + 3.1415926)*180/3.1415926; end

theta114 = (atan(X(8,1)/X(7,1)))*180/3.1415926; if(X(7,1)<0) theta114 = 

(atan(X(8,1)/X(7,1)) + 3.1415926)*180/3.1415926; end

%CALCULATION OF THE ELEMENTS OF THE 'd' MATRIX

d1 = -1*ma*rga*(alphaa*cos(thetaa + deltaa - (3.1415926/2)) + 

omegaa*omegaa*cos(thetaa + deltaa));

d2 = ma*9.81 - ma*rga*(alphaa*sin(thetaa + deltaa - (3.1415926/2)) + 

omegaa*omegaa*sin(thetaa + deltaa));

d3 = ma*ka*ka*alphaa;

d4 = -1*mb*rgb*(alphab2*cos(thetab2 + deltab - (3.1415926/2)) + 

omegab2*omegab2*cos(thetab2 + deltab));

d5 = mb*9.81 - mb*rgb*(alphab2*sin(thetab2 + deltab - (3.1415926/2)) + 

omegab2*omegab2*sin(thetab2 + deltab));

d6 = mb*kb*kb*alphab2;

d7 = -1*mc*rgc*(alphac2*cos(thetac2 + deltac - (3.1415926/2)) + 

omegac2*omegac2*cos(thetac2 + deltac));

d8 = mc*9.81 - mc*rgc*(alphac2*sin(thetac2 + deltac - (3.1415926/2)) + 

omegac2*omegac2*sin(thetac2 + deltac));

d9 = mc*kc*kc*alphac2 - Tl;

%CALCULATIONS OF THE ELEMENTS OF THE 'C' MATRIX

C31 = rga*sin(thetaa + deltaa); 

C32 = -1*rga*cos(thetaa + deltaa);

C33 = a*sin(thetaa) - rga*cos(thetaa + deltaa);

C34 = rga*cos(thetaa + deltaa) - a*cos(thetaa); 

C39 = 1;

C63 = rgb*sin(thetab2 + deltab); 

C64 = -1*rga*cos(thetab2 + deltab);

C65 = b*sin(thetab2) - rgb*cos(thetab2 + deltab); 

C66 = rgb*cos(thetab2 + deltab) - b*cos(thetab2);

C95 = rgc*cos(thetac2 + deltac) - c*sin(thetac2);

C96 = c*cos(thetac2) - rgc*cos(thetac2 + deltac);

C97 = rgc*sin(thetac2 + deltac);

C98 = -1*rgc*cos(thetac2 + deltac);

D = [d1 d2 d3 d4 d5 d6 d7 d8 d9];

C = [1 0 -1 0 0 0 0 0 0;0 1 0 -1 0 0 0 0 0;C31 C32 C33 C34 0 0 0 0 1;0 0 1 0

-1 0 0 0 0;0 0 0 1 0 -1 0 0 0;0 0 C63 C64 C65 C66 0 0 0;0 0 0 0 1 0 1 0 0;0 0

0 0 0 1 0 1 0;0 0 0 0 C95 C96 C97 C98 0];

theta212 =

theta223 =

theta234 =

theta214 =

%CALCULATION OF THE SECOND SOLUTION 

Y = (inv(C))*D';

theta212 = (atan(Y(2,1)/Y(1,1)))*180/3.1415926; if(Y(1,1)<0)

(atan(Y(2,1)/Y(1,1)) + 3.1415926)*180/3.1415926; end 

theta223 = (atan(Y(4,1)/Y(3,1)))*180/3.1415926; if(Y(3,1)<0) 

(atan(Y(4,1)/Y(3,1)) + 3.1415926)*180/3.1415926; end 

theta234 = (atan(Y(6,1)/Y(5,1)))*180/3.1415926; if(Y(5,1)<0) 

(atan(Y(6,1)/Y(5,1)) + 3.1415926)*180/3.1415926; end 

theta214 = (atan(Y(8,1)/Y(7,1)))*180/3.1415926; if(Y(7,1)<0) 

(atan(Y(8,1)/Y(7,1)) + 3.1415926)*180/3.1415926; end

%DISPLAY OF RESULTS

disp('There are two sets of solutions possible : ');



 
B

disp('Set I : ');

disp('X = [F12x F12y F23x F23y F34x F34y F14x F14y Ts] ');disp(X); 

disp('F12 = ');disp(sqrt(X(1,1)^2 + X(2,1)^2));

disp('theta_F12 = ');disp(theta112);

disp('F23 = ');disp(sqrt(X(3,1)^2 + X(4,1)^2)); 

disp('theta_F23 = ');disp(theta123);

disp('F34 = ');disp(sqrt(X(5,1)^2 + X(6,1)^2)); 

disp('theta_F34 = ');disp(theta134);

disp('F14 = ');disp(sqrt(X(7,1)^2 + X(8,1)^2));

disp('theta_F14 = ');disp(theta114);

disp('Set II : ');

disp('Y = [F12x F12y F23x F23y F34x F34y F14x F14y Ts] ');disp(Y); 

disp('F12 = ');disp(sqrt(Y(1,1)^2 + Y(2,1)^2));

disp('theta_F12 = ');disp(theta212);

disp('F12 = ');disp(sqrt(Y(3,1)^2 + Y(4,1)^2)); 

disp('theta_F23 = ');disp(theta223);

disp('F12 = ');disp(sqrt(Y(5,1)^2 + Y(6,1)^2)); 

disp('theta_F34 = ');disp(theta234);

disp('F12 = ');disp(sqrt(Y(7,1)^2 + Y(8,1)^2)); 

disp('theta_F14 = ');disp(theta214);

flag=flag+2; 

end

%END OF CODE

Dynamic analysis of Slider Crank Mechanism

D

C

A

O

=
   2 2

x

x =displacement of piston from inner dead center

r[(n1) (n cos  cos )]

 r 1 cos  n n  sin 





If the connecting rod is very large n2 is very large, and hence n2  sin2 will approach n.

The equation converts to

x  r(1 cos )
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sin 2

This is the expression for a SHM. Thus the piston executes SHM when connecting rod is large.

Velocity of Piston:-

v 
dx


dx

.
d

dt d dt


 r sin  

 2  n2  sin2 

if n2 is large compared to sin2 then

2n
v  rsin 

sin 2 
 

If
2n

sin 2
can be neglected (when n is quite less) then

v  rsin

2

2n n

Acceleration of Piston:-

a 
dv


dv

.
d

dt d dt

d   sin 2  
 r sin    r cos 

d  
cos2 

 
   

If n is very large a  r2co s which is SHM

When   00 i.e. at IDC a  r2 1
1 

 n 

When  1800 i.e. at ODC  a  r2 1
1 

 n 

At  1800 when the direction of motion is reversed  a  r2 1
1

 n 

n

Angular Velocity and Angular Acceleration of Connecting rod:-

sin  
sin

a
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c

n
1

n

cos


dt ncos

cos cos

Differentiating 
d



  
n2  sin2n2  sin2

 

2

(3/ 2)
2 2dt d dt

c  angular acceleration of the connecting rod


n 1




dc 
dc .

d
 2 sin 

n  sin 





The negative sign indicates that the sense of angular acceleration of the rod is such that it tends 

to reduce the angle .

Net or Effective force on the Piston:-

A1= area of the cover end

A2 = area of the piston end

P1 = pressure of the cover end

P2 = pressure of the piston end

m = mass of the reciprocating parts

Force on the piston Fp  P1A1  P2 A2

2

b
n

 cos 2
Inertia force F  ma  mr cos  

 

Net or Effective force on the piston F  Fp  Fb

F
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Crank Effort:-

It is the net effort (force) applied at the crank pin perpendicular to the crank, which gives the

required turning moment on the crankshaft.

Ft = crank effort

Fc = force on the connecting rod

As  Ftr  Fcr sin(   )

 Ft  Fc sin(   )  sin(   )
cos



F

cos

Fr

cos

sin 2

T  Ftr

 sin(   )r



1 
 Fr


sin  cos sin 

cos 
 


 Fr  sin  

 2  n2  sin2 

(sin cos  cos sin  )

Also
Then m m   mb d

and mbb  md d
r sin(   ) OD cos

F

cos

F
(ODcos )

cos

T  Ftr

 r sin(   )



 F (OD)

Point masses at two points, if it is ensured that the two masses together have the same dynamic 

properties.

l

The two member will be dynamically similar if
(i)

(ii)

(iii)

The sum of two masses is equal to the total mass

The combined centre of mass coincides with that of the rod

The moment of inertia of the two point masses about perpendicular axis through their 

combined centre of mass is equal to that of the rod.

G

b a

B
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B A

b d



mb md  m 

mbb  md d

b

d

d
m  m

b d 

b
m   m

b d

Let m be the total mass of the rod and one of the masses be located at the small end B. Let the 

second mass be placed at D and

mb  mass at B

md  mass at D

Take BG = b

DG = d

Then mb md  m

and mbb  md d

 m  m
d

and m   m
b

b b d d b d
2 2

d b
d 2

I  mbb md d

 m b2 m
b d b d

 mbd  mK 2

 K 2  bd

Instead of keeping the mass at D if we keep at A the first two conditions can be satisfied as 

follows.

b a

l

B A

G

b d

B A

G D
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a b

Then mb ma  m

and mbb  maa

 mb  m
b a

and ma  m
b a

But I   mab, assuming a>d, I >I

So by considering the two masses at A and B instead of B and D, the inertia torque is increased 

from the actual value of T  I

 mbc (a  b) (b  d )

 mbc (l  L)

This much torque must be applied to the two mass system in the opposite direction to that of 

angular acceleration to make the system dynamically equivalent to that of the actual rod.

The correction couple will be produced by two equal, parallel, and opposite forces Fy acting at

the gudgeon pin and crank pin ends perpendicular to the line of stroke. Force at B is taken by the 

reaction of guides.

b a

B A

B O

A

l
r
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Fy

Fy

Torque at the crank shaft due to force at A or correction torque,



cl
r n

1

n

cos cos

Tc  Fyr cos


T  

r cos 
mbc (l  L) cos


mbc (l  L)cos

 mb (l  L)
cos

n2  sin2n2  sin2

Also due to weight of mass at A, a torque is exerted on the crankshaft which is given by

Ta  (ma g)r cos

In case of vertical engines, a torque is also exerted on the crankshaft due to weight at B and can

be given by,

b

sin 2 
(m g)r  sin  

 2  n2  sin2 

The net torque on the crank shaft will be vectorial sum of the torquesT ,Tc ,Ta and Tb .

Example1: The connecting rod of an IC engine is 450 mm long and has a mass of 2 kg. The

center of the mass of the rod is 300 mm from the small end and its radius of gyration about an

axis through this center is 175 mm. The mass of the piston and the gudgeon pin is 2.5 kg and the

stroke is 300 mm. The cylinder diameter is 115 mm. Determine the magnitude and direction of

the torque applied on the crankshaft when the crank is at 40 degree and the piston is moving

away from the inner-dead center under an effective gas pressure of 2 N/mm2. The engine speed

is 1000 rpm.

Solution:

n = l/r =450/150 = 3.

A

B

B

A

G



O
400

Fp

Inertia forces due to reciprocating masses:

Divide the mass of the rod into two dynamically equivalent parts
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Mass of the crank pin, ma = (m b) / l = 2300/450 where m is mass of the rod

= 1.333 kg.

Mass at the gudgeon pin, mb = 2-1.3333= 0.6667 kg.

Total mass of the reciprocating parts, m=2.5+0.6667=3.16667 kg


n

cos  cos 2Inertia force due to reciprocating masses, Fb = mr 2 


= 3.16670.15 (2 1000/60)2 (cos40+(cos80)/3)

= 4290.6 N.

Force on the piston, Fp = 2106/4 (0.115)2 = 20773.8 N 

Net force, F =Fp – Fb


 



 

2 2

sin 2

2  n   sin  
Torque due to this force, T  Frsin 

T  =2004.7 Nm

Torque to consider the correction couple:




 2 3/ 2 2

2

   2 sin


(n  sin  )

n  1
c

= -2240.3 rad/s2.

L = b+d = b+k2/b = 402.08 mm.

cos
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n2  sin 2 
Tc  mbc (l  L) where m is mass of the rod

= -16.84 Nm

Torque due to mass at A:

Ta  ma gr cos

= 1.503 Nm.

Total torque on the crankshaft:

Net torque on the crank shaft =T – Tc + Ta

= 2004.7+16.84+1.503

= 2021.1 Nm. (answer)

Example 2: The connecting rod of a vertical reciprocating engine is 2 m long and has a weight 

of 300 kg. The mass center is 825 mm from big end bearing. When suspended as pendulum from



the gudgeon pin axis, it makes 10 complete oscillations in 25 sec. Calculate radius of gyration of

the connecting rod. The crank is 400 mm long and rotates at 200 rpm. When the crank has turned

through 45 degree from the top dead center and the piston is moving downwards, analytically

and graphically find the torque acting at the crankshaft.

Solution:

Torque to consider the correction couple:

We know that b+d = b+k2/b =L

b = 2-0.825 = 1.175 m

and t  2
L

= 25/10
g

Ð L = 1.553 m

Now, 1.175 + k2/1.175 = 1.553

47

n = l/r =2000/400 = 5.

Inertia forces due to reciprocating mass:

Divide the mass of the rod into two dynamically equivalent parts 

Mass of the crank pin, ma = m b l = 300 (2-0.825)/2  (where m is 

mass

of the rod)

= 176.35 kg.

Mass at the gudgeon pin, mb = 300-176.25 = 123.75 kg.

Inertia force due to reciprocating masses, F = m r 2 
cos  cos 2 

b  
 n 

F = 123.750.4 (2 200/60)2 (cos45+(cos90)/5)

F = 15348 N.

 sin 2 
Torque due to this force, T  Frsin  

 2 2 
 2  n   sin  

T  =4967.6 Nm

B

l=2m

A

45o 

r=0.4 m

O



Ð k = 0.6665 m.




 2 3 / 2 2

2

   2 sin


(n   sin  )

n  1
c

= -61.36 rad/s2.

cos

n2  sin 2 
Tc  mbc (l  L) where m is mass of the rod.

= -1381.2 Nm

Torque due to weight of mass at A:

Ta  ma gr sin

= 489 Nm.

Torque due to weight of mass at B:


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


 

2 2

sin 2

2  n   sin  
T  mb grsin 



= 392 Nm

Total inertia torque on the crankshaft:

Total inertia torque on the crankshaft = 4967.6-(-1381.2)-489-392

=5466.7 Nm.

Graphical method:

Klein’s construction is shown in the following diagram. 

From the diagram,

gO = 0.3282 m, IY = 1.0318 m, IX = 2.0952 m, IP = 2.2611 m, IC = 2.7977 mm.

We know that,

FC = mc ω
2 (gO) = 300 (20.94)20.3282 = 43173.1 N 

WC = 3009.81 = 2943 N

Now, take the moment of the forces about the point I.

FT  (IC) = FC  (IY) – WC (IX)

From this we can calculate the unknown FT 

FT = 13714 N

Inertia torque, T = FT  r = 13705  0.4 = 5487 Nm.
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Summery

In this chapter the following concepts are learned

 Inertia forces and couples

 Offset inertia force

 Dynamically equivalent system

 Determination of radius of gyration of crankshaft by method of oscillation

 Piston effort, crank effort

 Dynamic force analysis of mechanisms using graphical method, vector method and virtual work 

principle

Exercise Problems

1. Determine the torque required to drive link AB of the four bar mechanism in the position

shown in figure below under the action of forces F2 and F3 with magnitudes of 50 N and 75 N,

respectively. Force F2 acts in the horizontal direction and F3 acts as shown in the figure. Weight

of links AB, BC and CD are 5 N, 7.5 N and 8 N respectively. AB=30 cm, BC=40 cm, CD=50 cm

and the fixed link AD=75 cm and CE=15 and CF= 20cm. Crank AB is rotating at 100rpm in

clockwise direction, Use both graphical and analytical methods

D

C
E

A

B F

45
0

450
F

50

3

F2

2. Assuming F2 = F3 = 0, determine the torque required to overcome the inertia forces of the

links of the four bar mechanism in problem 1 if (a) link AB accelerated at the rate of 5 rad/sec2,

(b) decelerated at the rate of 5 rad/sec2. Use virtual work principle, graphical and vector method

to solve the problem.

3 The connecting rod of a reciprocating compressor is 2 m long and has a weight of 300 kg. The

mass center is 825 mm from big end bearing. The radius of gyration of the connecting rod is 0.7

m. The crank is 420 mm long and rotates at 250 rpm. When the crank has turned through 225

degree from the inner dead center and the piston is moving towards left, analytically and

graphically find the torque acting at the crankshaft. Consider mass of crank, connecting rod and

piston to be 5 kg, 4 kg and 2 kg respectively.

4. Figure below shows a mechanism used to crush rocks. Considering mass of link AB, BC and

CDE to be 0.8, 1 and 1.5 respectively, in the position shown, determine the torque required to

drive the input link AB when the crushing force acting in the horizontal direction is 5000N.

Here, AB = 50 cm, BC=100 cm, CD=120 cm and the fixed link AD=150 cm and CE=25 cm and



the angle CED of the ternary link CED is 900. Assuming link AB is rotating with 500 rpm in

clockwise direction, use (a) graphical method, (b) analytical method and (c) virtual work

principle to determine the bearing forces and power required by the motor.

5000 N

DA

B

E

45
0

C

F
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