Signal

A signal describes a time varying physical phenomenon which is intended to convey information. (or) Signal is a function of time or any other variable of interest. (or) Signal is a function of one or more independent variables, which contain some information. Signals may be of continuous time or discrete time signals.

Example: voice signal, video signal, signals on telephone wires, EEG, ECG etc.

System:

System is a device or combination of devices, which can operate on signals and produces corresponding response. Input to a system is called as excitation and output from it is called as response. (or) System is a combination of sub units which will interact with each other to achieve a common interest. For one or more inputs, the system can have one or more outputs.

Example: Communication System

Elementary Signals or Basic Signals:

Unit Step Function

Unit step function is denoted by $u(t)$. It is defined as $u(t)=1$ when $t \geq 0$ and

0 when $\mathrm{t}<0$.

- It is used as best test signal.
- Area under unit step function is unity.

Impulse function is denoted by $\delta(\mathrm{t})$. It is defined as

$\delta(t)=\frac{d u(t)}{d t}$

Ramp signal is denoted by $\mathrm{r}(\mathrm{t})$, and it is defined as $\mathrm{r}(\mathrm{t})=\left\{\begin{array}{l}t, t \geq 0 \\ 0, t<0\end{array}\right\}$ Area under unit ramp is unity.

$$
u(t)=\frac{d r(t)}{d t}
$$

Parabolic signal is defined as $\mathrm{x}(\mathrm{t})=\left\{\begin{array}{c}\frac{t^{2}}{2}, t \geq 0 \\ o, t<0\end{array}\right\}$

$$
\begin{aligned}
\iint u(t) d t=\int r(t) d t & =\int t d t=\frac{t^{2}}{2}=\text { parabolicsignal } \\
& \Rightarrow u(t)=\frac{d^{2} x(t)}{d t^{2}} \\
& \Rightarrow r(t)=\frac{d x(t)}{d t}
\end{aligned}
$$

Signum Function

Signum function is denoted as $\operatorname{sgn}(\mathrm{t})$. It is defined as $\operatorname{sgn}(\mathrm{t})=\left\{\begin{array}{c}1, t>0 \\ 0, t=0 \\ -1, t<0\end{array}\right\}$

$$
\operatorname{sgn}(t)=2 u(t)-1
$$

Exponential Signal

Exponential signal is in the form of $\mathrm{x}(\mathrm{t})=e^{\alpha t}$
The shape of exponential can be defined by α
Casei: if $\alpha=0 \rightarrow \mathrm{x}(\mathrm{t})=e^{0}=1$

Caseii: if $\alpha<0$ i.e.-vethenx $(\mathrm{t})=e^{-\alpha t}$
. The shape is called decaying exponential.

Caseiii:if $\alpha>0$ i.e. + vethen $\mathrm{x}(\mathrm{t})=e^{\alpha t}$
. The shape is called raising exponential.

Rectangular Signal

Let it be denoted as $x(t)$ and it is defined as

$$
x(t)=\text { A rect }\left[\frac{r}{T}\right] \quad \text { ex: } 4 \text { rect }\left[\frac{r}{6}\right]
$$

Triangular Signal

Let it be denoted as $\mathrm{x}(\mathrm{t})$

$$
x(t)=A\left[1-\frac{|t|}{T}\right]
$$

$e x: x(t)=A\left[1-\frac{|t|}{5}\right]$

Sinusoidal Signal

Sinusoidalsignalisin theformof $\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (w 0 \pm \phi) \operatorname{or} A \sin (w 0 \pm \phi)$

Where $\mathrm{T} 0=2 \pi / w 0$

