Gram Schmidt Orthogonalisation Process

Theorem:

Every finite dimensional inner product space has an orthonormal basis.(Gram Schmidt Orthogonalization Process)

PROBLEMS

Apply Gram-Schmidt process to construct an orthonormal basis for $V_{3}(R)$ with the standard inner product for the basis $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$, Where $\mathrm{v}_{1}=(1,0,1) ; \mathrm{v}_{2}=(1,3,1)$ and $\mathrm{v}_{3}=(3,2,1)$.

Sol: The first vector in the orthogonal basis is

$$
\mathrm{w}_{1}=\mathrm{v}_{1}=(1,0,1)
$$

The formula for the second vector in the orthogonal basis is $\mathrm{W}_{2}=\mathrm{v}_{2}-\frac{\left(v_{2}, w_{1}\right)}{\left\|w_{1}\right\|^{2}} w_{1}$
The quantities that we need for this step are

$$
\begin{aligned}
\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right) & =((1,3,1),(1,0,1)) \\
& =1+0+1=2
\end{aligned}
$$

$$
\left\|w_{1}\right\|^{2}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=1^{2}+0^{2}+1^{2}=2
$$

The quantities that we need for this step are

$$
\begin{aligned}
& \left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)=((1,3,1),(1,0,1)) \\
& =1+0+1=2 \\
& \left\|w_{1}\right\|^{2}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=1^{2}+0^{2}+1^{2}=2 .
\end{aligned}
$$

Therefore the second vector is

$$
\begin{gathered}
\mathrm{W}_{2}=(1,3,1)-\frac{2}{2}(1,0,1) \\
=(1,3,1)-(1,0,1) \Rightarrow(0,3,0) .
\end{gathered}
$$

The formula for the third (and final) vector in the orthogonal basis is

$$
\mathrm{w}_{3}=\mathrm{v}_{3}-\frac{\left(v_{3}, w_{1}\right)}{\left\|w_{1}\right\|^{2}} w_{1}-\frac{\left(v_{3}, w_{1}\right)}{\left\|w_{2}\right\|^{2}} w_{2}
$$

The quantities that we need for this steps are

$$
\begin{array}{r}
\left\|w_{2}\right\|^{2}=\left(\mathrm{w}_{2}, \mathrm{w}_{2}\right)=0^{2}+3^{2}+0^{2}=9 . \\
\left(\mathrm{v}_{3}, \mathrm{w}_{1}\right)=((3,2,1),(1,0,1))=3+0+1=4 \\
\left(\mathrm{v}_{3}, \mathrm{w}_{2}\right)=((3,2,1),(0,3,0))=0+6+0=6
\end{array}
$$

Therefore the third vector is

$$
\begin{aligned}
\begin{aligned}
\mathrm{W}_{3} & =(3,2,1)-\frac{4}{2}(1,0,1)-\frac{6}{9}(0,3,0) \\
& =(3,2,1)-2(1,0,1)-\frac{2}{3}(0,3,0) \\
& =(1,0,-1)
\end{aligned} \\
\left\|w_{3}\right\|^{2}=\left(\mathrm{w}_{3}, \mathrm{w}_{3}\right)=1^{2}+0^{2}+(-1)^{2}=2 .
\end{aligned}
$$

The orthogonal basis is

$$
\{(1,0,1),(0,3,0),(1,0,-1)\}
$$

The orthonormal basis is

$$
\beta=\left\{b_{1}, b_{2}, b_{3}\right\}
$$

Where $\mathrm{b}_{1}=\frac{\left(w_{1}\right)}{\left\|w_{1}\right\|}, \mathbf{b}_{2}=\frac{\left(w_{2}\right)}{\left\|w_{2}\right\|}, \mathrm{b}_{3}=\frac{\left(w_{3}\right)}{\left\|w_{3}\right\|}$,
$\left\|w_{1}\right\|^{2}=2 \Rightarrow\left\|w_{1}\right\|=\sqrt{2}$
$\left\|w_{2}\right\|^{2}=9 \Rightarrow\left\|w_{2}\right\|=3$
$\left\|w_{3}\right\|^{2}=2 \Rightarrow\left\|w_{3}\right\|=\sqrt{2}$

$$
\mathrm{b}_{1}=\frac{\left(w_{1}\right)}{\left\|w_{1}\right\|}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)
$$

$$
\mathrm{b}_{2}=\frac{\left(w_{2}\right)}{\left\|w_{2}\right\|}=(0,1,0)
$$

$$
\mathrm{b}_{3}=\frac{\left(w_{3}\right)}{\left\|w_{3}\right\|}=\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)
$$

Therefore the orthonormal basis is

$$
\begin{gathered}
\beta=\left\{b_{1}, b_{2}, b_{3}\right\} \\
\beta=\left\{\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),(0,1,0)\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)\right\} .
\end{gathered}
$$

