NULL SPACES AND RANGES

Null space (or) Kernal

Let *V* and *W* be vector spaces and let $T: V \to W$ be linear transformation Then the set of all vectors *x* in *V* such that $T(x) = 0_W$ is called the null space (o kernel) of *T*. It is denoted by (*T*).

(i.e)
$$N(T) = \{x \in V : T(x) = 0_W\}$$

Note: 0_W is the zero element of W.GINEER

Range or Image

Let *V* and *W* be vector spaces and let $T: V \to W$ be linear transformation. Then the subset of *W* consisting of all images under *T* of vectors in *V* is called range o. image of *T*. It is denoted by R(T)

(i.e)
$$R(T) = \{T(x) : x \in V\}$$

Theorem 2.1: Let V and W be vector spaces and $T: V \to W$ be linear. Then

(a) N(T) is a sub space of V and

(b) R(T) is a subspace of W.

Proof: Given that V and W are vector spaces.

 $T: V \to W$ is linear.

(a) To prove N(T) is a subspace of V.

We have to prove for $\alpha, \beta \in F$ and $x, y \in N(T) \Rightarrow \alpha x + \beta y_6$

Since *T* is linear, $\mu y \in N(\gamma)$

 $T(0_V) = 0_W$; 0_V -zero vector of V and 0_W -zero vector of W.

 $\therefore 0_V \in N(T)$ $\therefore N(T) \text{ is non-empty.}$ Let $x, y \in N(T)$ and $\alpha, \beta \in F$ $\Rightarrow T(x) = 0_W, T(y) = 0_W$

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y) (:: \text{Tis linear})$$
$$= \alpha(0_W) + \beta(0_W) = 0_W$$
$$\therefore T(\alpha x + \beta y) = 0$$
$$\Rightarrow \alpha x + \beta y \in N(T)$$

 $\therefore N(T)$ is subspace of V

(b) To prove R(T) is subspace of W.

We have to prove for $\alpha, \beta \in F$ and $x, y \in R(T) \Rightarrow \alpha x + \beta y \in N(T)$

Since $T(0_V) = 0_W$ (: *T* is linear) GINEED

 $\Rightarrow 0_w \in R(T)$ $\therefore R(T) \text{ is non-empty.}$

Let
$$x, y \in R(T)$$
 and $\alpha, \beta \in F$

Then there exits u and v in V such that

$$T(u) = x$$
 and $T(v) = y$

$$\alpha x + \beta y = \alpha T(u) + \beta T(v)$$

$$= T(\alpha u + \beta v) \in R(T)[\because \alpha u + \beta v \in V]$$

 $\therefore \alpha x + \beta y \in R(T)$

 $\therefore R(T)$ is a subspace of W.

Theorem 2.2: Let *V* and *W* be vector spaces over a field F. Let T:V-> linear transformation which is onto. Then *T* maps a basis of *V* onto a *W*. Proof Let $\{v_1, v_2, ..., v_n\}$ be a basis for *V*.

We shall prove that $T(v_1), T(v_2), ..., T(v_n)$ are linearly independent and that the span W.

Now,
$$\alpha T(v_1) + \alpha_2 T(V_2) + \dots + \alpha_n T(v_n) = 0$$

$$\Rightarrow T(\alpha_1 v_1) + T(\alpha_2 v_2) + \dots + T(\alpha_n v_n) = 0. [:: T \text{ is linear}]$$

$$\Rightarrow T(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n) = 0$$

 $\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0 \text{ (since } v_1, v_2, \dots, v_n \text{ are linearly independent).}$ $\therefore T(v_1), T(v_2), \dots, T(v_n) \text{ are linearly independent.}$

Now, let $w \in W$. then since *T* is onto, there exists a vector $v \in V$ such T(v) = w

Since L(S) = V,

 $v = \alpha_1 v_1 + \dots + \alpha_n v_n$ GINEER

Then

$$w = T(v)$$

= $T(\alpha_1 v_1 + \dots + \alpha_n v_n)$
= $\alpha_1 T(v_1) + \dots + \alpha_n T(v_n)$ [:: T is linear]

Thus w is a linear combination of the vectors $T(v_1), T(v_2), ..., T(v_n)$. \therefore $T(v_1), T(v_2), ..., T(v_n)$ span W an hence is a basis for W.

2.1.3. NULLITY AND RANK

Definition

Let *V* and *W* be vector spaces, and let $T: V \to W$ be a linear transformation. If N(T) and R(T) are finite-dimensional, then we define

nullity
$$(T) = \dim[N(T)]$$

rank $(T) = \dim[R(T)]$

Note: If nullity $(T) = \{0\}$, then dim[N(T)] = 0 i.e., nullity (T) = 0

Theorem 2.5: Rank-Nullity Theorem (or dimensional theorem) Let $T: V \to W$

be a linear transformation and V be a finite dimensional vector

space. Then

$$\dim[R(T)] + \dim[N(T)] = \dim(V)$$

(i.e) $\operatorname{ran} k(T) + \operatorname{nullity} (T) = \dim(V)$

Proof:

Let *V* be a vector space of dimension *m*.i.e., $\dim(V) = m$. Since N(T) is subspace of the finite dimensional vector space *V* dimension of N(T) is also finite

Let $\dim(N(T)) = n$

Since N(T) is a subspace of $V, n \le m$

Let $\beta = \{v_1, v_2, \dots, v_n\}$ be a basis N(T). Since $v_i \in N(T)$, for $1 \le i \le n$, Then $T(v_l) = 0, 1 \le i \le n$

Since β is a basis of N(T), β is linearly independent in N(T).

Therefore β is linearly independent in V.

We shall extend this set β to a basis of the vector space V.

Let this basis of V be $\beta_1 = \{v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_s\}$, where n + s = m.

Let $\gamma = \{T(u_1), T(u_2), ..., T(u_s)\}.$

We shall show that this set γ is a basis of R(T)

ie, to prove $L(\gamma) = R(T)$

and γ is linearly independent.

Since β_1 is a basis of *V*, it spans V. Hence the set

 $\{T(v_1), T(v_2), \dots, T(v_n), T(u_1), T(u_2), \dots, T(u_s)\}$ span R(T)

Since $T(v_i) = 0$, for $1 \le i \le n$

the set
$$\{T(u_1), T(u_2), ..., T(u_s)\}$$
 spans $R(T)$.

 $L(\gamma) = R(T)$

To prove is linearly independent.

Let
$$a_1T(u_1) + a_2T(u_2) + \dots + a_sT(u_s) = 0$$
.
 $\Rightarrow T(a_1u_1 + a_2u_2 + \dots + a_su_s) = 0[\because T \text{ is linear }]$
 $\Rightarrow a_1u_1 + a_2u_2 + \dots + a_su_s \in N(T)$
Since $\beta = (v_1, v_2, \dots, v_n)$ is a basis in $N(T)$,
 $a_1u_1 + a_2u_2 + \dots + a_su_s = b_1v_1 + b_2v_2 + \dots + b_nv_n$
 $\Rightarrow a_1u_1 + a_2u_2 + \dots + a_su_s - b_1v_1 - b_2v_2 - \dots - b_nv_n = 0$

Since β_1 is a basis of $V, u_1, u_2, ..., u_n, v_1, v_2, ..., v_s$ are linearly independent,

$$\therefore a_1 = a_2 = \dots = a_s = 0, b_1 = b_2 = \dots = b_n = 0$$
$$\therefore a_1 T(u_1) + a_2 T(u_2) + \dots + a_s T(u_s) = 0$$
$$\Rightarrow a_1 = a_2 = \dots = a_s = 0$$

 $\gamma = \{T(u_1), T(u_2), \dots, T(u_s)\}$ is linearly independent $\therefore \gamma$ is a basis of R(T)

 $\therefore \dim R(T) = s$

We have
$$m = n + s$$

 $\therefore \dim(V) = \dim[N(T)] + \dim[R(T)]$

i.e.,
$$\operatorname{ran} k(T) + \operatorname{nullity} (T) = \dim(V)$$

Theorem 2.6: Let *V* and *W* be vector space, and let $T: V \to W$ be transformation. Then *T* is one-to-one if and only if $N(T) = \{0\}$.

Proof:

Assume: T is 1 - 1 (one-to-one)

Let $u \in N(T)$. Then

$$T(u) = 0 = T(0)$$

$$\therefore T(u) = T(0)$$

$$\Rightarrow u = 0 (\because T \text{ is } 1 - 1)$$

$$\therefore N(T) = \{0\}$$

Conversely, assume that $N(T) = \{0\}$ NEER

Let
$$T(u) = T(v)$$
.
 $T(u) - T(v) = 0$
 $T(u - v) = 0$ (\because T is linear)
 $\Rightarrow u - v \in N(T) = \{0\}$
 $\therefore u - v = 0$
 $\therefore u = v$

 \therefore *T* is 1 – 1 (one-to-one).

Theorem 2.7: If *V* and *W* be finite dimensional over *F* and $T: V \rightarrow W$ be Then the following are equivalent.

- 1 *T* is one-to-one
- 2 T is onto
- 3 rank $(T) = \dim(W)$

Proof:

By dimensional theorem we have

rank(T) + nullity (T) = dim(V) ... (
T is one-to-one
$$\Leftrightarrow N(T) = \{0\}$$

 \Leftrightarrow nullity (T) = 0
 \Leftrightarrow rank(T) = dim V [usin g(1)]
 \Leftrightarrow dim $R(T) = \dim W [T \text{ is } 1 - 1]$
 $\Leftrightarrow R(T) = W[\because R(T) \subseteq W \text{ with same rank}]$
 $\Leftrightarrow T' \text{ is onto.}$

2. 1.4. PROBLEMS UNDER RANK AND NULLITY

Let *V* and *W* be vector space and let $T: V \to W$ be linear map

- $N(T) = \{x \in V: T(x) = 0_W\}$
- nullity $(T) = \dim(N(T))$
- $R(T) = \{T(x) : x \in V\}$
- $\operatorname{rank}(T) = \operatorname{image}(R(T))$

Example 17. Let $T: R^3 - R^2$ by $T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$. Find N and R(T)

Sol: To find N(T): $N(T) = \{(a_1, a_2, a_3) \in R^3 : T(a_1, a_2, a_3) = 0\}$

Let $T(a_1, a_2, a_3) = 0$

 $(a_1 - a_2, 2a_3) = 0$

Equating each terms to zero, we get

$$2a_{3} = 0$$

$$a_{3} = 0$$

$$a_{1} - a_{2} = 0$$

$$a_{1} = a_{2}$$

$$N(T) = \{(a_{1}, a_{2}, a_{3})\}$$

$$= \{(a_{1}, a_{1}, 0): a_{1} \in R\}$$

To find R(T): The usual basis of R^3 is $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$ Given, $T(a_1, a_2, a_3) = (a_1 - a_2, 2a_3)$ T(1,0,0) = (1,0) T(0,1,0) = (-1,0) = -1(1,0) T(0,0,1) = (0,2) = 2(0,1)Image(T) = span{(1,0), -(1,0), 2(1,0)} $= span{(1,0), (1,0)} \begin{bmatrix} * -(1,0) \text{ is depending on } (1,0) \\ 2(1,0) \text{ is multiple of } (1,0) \end{bmatrix}$ $= \{x(1,0) + y((1,0)\}$ $= \{x(1,0) + y((1,0))\}$ $= R^2$

Example 18. Let $T: R^2 \rightarrow R^3$ be a linear map defined by $T(a_1, a_2) = (a_1 - a_2, 0, 0)$. Find nullity (*T*) and rank(*T*). Sol: To find nullity (*T*) : $N(T) = \{(a_1, a_2) \in R^2: T(a_1, a_2) = 0\}$ Let $T(a_1, a_2) = 0$

$$(a_1 - a_2, 0, 0) = (0, 0, 0)$$
$$a_1 - a_2 = 0$$
$$a_1 = a_2$$
$$N(T) = \{(a_1, a_1)/a_1 \in R\}$$
$$=\{(1, 1)a_1/a_1 \in R\}$$

The basis of N(T) is $\beta = \{(1,1)\}$

The nullity of $T = \dim[N(T)] = 1$

To find range (T):

The usual basis of R^2 is $\beta = \{(1,0), (0,1)\}$

Given,
$$T(a_1, a_2) = (a_1 - a_2, 0, 0)$$
.

T(1,0) = (1,0,0)

$$T(0,1) = (-1,0,0)$$

The image of usual basis span Image (T)

Let $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} R_2 \to R_2 + R_1$

The basis of R(T) is the non-zero row of the echelon matrix. Therefore the basis of R(T) is $\gamma = \{(1,0,0)\}$.

rank(T) = dim[R(T)] = 1 Example (19) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear mapping defined by $T(a_1, a_2) = (a_1 + a_2, a_1 - a_2, a_2)$

Find the basis and dimension of (a) null space of T (b) Range of T

Sol: (a) To find (null space) kernel of T: Let $T(a_1, a_2) = 0$ $(a_1 + a_2, a_1 - a_2, a_2) = (0,0,0)$ Equating the like terms

$$a_1 + a_2 = 0 \dots (1)$$

 $a_1 - a_2 = 0 \dots (2)$

$$a_2 = 0$$

 $(1) \Rightarrow a_{2} = 0$ kernel of $T = N(T) = \{(0,0)\}$ The nullity of $T = \dim(N(T)) = 0$ (b) To find range of T: The usual basis of R^{2} is $\beta = \{(1,0), (0,1)\}$ Given, $T(a_{1}, a_{2}) = (a_{1} + a_{2}, a_{1} - a_{2}, a_{2})$ T(1,0) = (1,1,0)T(0,1) = (1,-1,0)The image of usual basis span Image(T)

$$Let A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 0 \end{bmatrix} R_2 \rightarrow R_2 - R_3$$

The basis of R(T) is the non-zero row of the echelon matrix Thus $y = \{(1,0,1), (0, -2, 0)\}$ forms a basis for Im(T).

Hence dim[lm(T)] = 2

i.e., Rank (T) = 2

Example 20. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined b $T(a_1, a_2, a_3) = (a_1 + 2a_2 - a_3, a_2 + a_3, a_1 + a_2 - 2a_3)$

Find the basis and dimension of (a) Kernel(b) Image of T

Sol: (a) To find kernel of T:

Let $T(a_1, a_2, a_3) = 0$

$$(a_1 + 2a_2 - a_3, a_2 + a_3, a_1 + a_2 - 2a_3) = (0,0,0)$$

$$a_1 + 2a_2 - a_3 = 0 \dots (1)$$

 $a_2 + a_3 = 0 \dots (2)$
 $a_1 + a_2 - 2a_3 = 0 \dots (3)$

Solve (1), (2)&(3)

The matrix of the given equations is

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} R_3 \to R_3 - R_1$$

$$\sim \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} R_3 \to R_3 + R_2$$

$$a_1 + 2a_2 - a_3 = 0 \dots (4)$$

$$a_2 + a_3 = 0 \dots (5)$$

Adding (4) and (5), we get

 $a_1 + 3a_2 = 0$

$$a_1 = -3a_2 \dots (6)$$

 a_1 is depending on a_2 .

Therefore the basis of N(T) contains one element

$$(6) \Rightarrow \frac{a_2}{-3} = \frac{a_2}{1}$$

 $a_1 = -3, a_2 = 1$

$$(5) \Rightarrow a_{3} = -1$$

Basis of kernel of *T* is $\beta = \{(-3,1,-1)\}$
nulliy(*T*) = dim(*N*(*T*)) = 1
(b) To find Image (*T*) :
The basis of *R*³ is $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$
Given,*T*(*a*₁, *a*₂, *a*₃) = (*a*₁ + 2*a*₂ - *a*₃, *a*₂ + *a*₃, *a*₁ + *a*₂ - 2*a*₃)
T(1,0,0) = (1,0,1)
T(0,1,0) = (2,1,1)
T(0,0,1) = (-1,1,-2)
The image of usual basis span Image (*T*)
Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 \end{bmatrix}$
 $\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} R_{2} \rightarrow R_{2} - 2R_{1}$
 $\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{bmatrix} R_{3} \rightarrow R_{3} + R_{1}$
 $\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} R_{3} \rightarrow R_{3} - R_{2}.$

The basis of R(T) is the non-zero row of the echelon matrix Thus $\gamma = \{(1,0,1), (0,1,-1)\}$ form a basis form Im(T).

Hence dim[Im(T)] = 2i.e, Rank(T) = 2Example 21. Let $T: P_3(R) \rightarrow P_2(R)$ defined by T[f(x)] = f'(x). find the nullity and rank of T. Sol: Let $f(x) \in P_3(x)$. Then

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots (1)$$

 $f'(x) = a_1 + a_2 x + a_3 x^2$

To find nullity (T):

 $N(T) = \{f(x) \in P_3(R) : T(f(x)) = 0\} \dots (2)$

Let T(f(x)) = 0. Then

F'(x) = 0

 $a_1 + a_2 x + a_3 x^2 = 0$ $a_1 + a_2 x + a_3 x^2 = 0 + 0x + 0x^2$ Solve ER

$$a_1 = 0, a_2 = 0, a_3 = 0$$

Example 23. Find the range space, kernel, rank and nullity of the following linear transformation. Also verify the rank-nullity theorem $T: V_2(R) \rightarrow V_2(R)$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$ Sol: To find (T): Let $T(x_1, x_2) = 0$ $(x_1 + x_2, x_1) = 0$

$$x_1 + x_2 = 0 \dots (1)$$

$$x_1 = 0$$

$$(1) \Rightarrow x_2 = 0$$

 \therefore N(T) contain only zero element of $V_2(R)$.

$$: N(T) = \{(0,0)\}$$

i.e the null space = $\{(0,0)\}$

 $\dim[N(T)] = 0$

i.e nullity = 0

To find R(T):

The standard basis $e_1 = (1,0), e_2 = (0,1)$ of $V_2(R)$

$$T(e_1) = T(1,0)$$

$$= (1 + 0, 1)$$

 $T(e_2) = T(0,1)$

= (1,0)

The image of usual basis span Image (T)

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} R_2 \rightarrow R_2 - R_1$$

This is in the echelon form there are two non-zero rows Basis of Image (*T*) is $\gamma = \{(1,1), (0, -1)\}$ Therefore, rank of *T* = 2 Hence R(T) is the subspace generated by (1,1) and (0, -1)

$$R(T) = x_1(1,1) + x_2(0,-1)$$
$$= (x_1, x_1) + (0, -x_2)$$
$$= (x_1, x_1 - x_2) \text{ for all } x_1, x_2 \in R$$

i.e the range space = $\{x_1, x_1 - x_2\} = V_2(R)$

Rank + nullity = 2 + 0

$$= 2$$

$$= \dim[V_2(R)]$$

Hence the nullity theorem is verified.

Example(24) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by Y(x,y,z)=(x+y,x-y,2x+z). Find the range space, null-space, rank and nullity of T and verify rank+nullity of T = dim(\mathbb{R}^3).

Sol: To find (T) :

$$T(x, y, z) = 0(x, x - 2y, 2x, 2x - 2y + z) = (0,0,0)$$

 $x_1 + x_2 = 0 \dots (1)$
 $x_1 - x_2 = 0 \dots (2)$
 $2x_1 + x_3 = 0 \dots (3)$
 $(1) + (2) \Rightarrow 2x_1 = 0$
 $x_1 = 0$
 $(1) \Rightarrow x_2 = 0$
 $(3) \Rightarrow x_3 = 0$
 $\therefore N(T) = \{(0,0,0)\}$
 $= \{0\}$
 $\Rightarrow \dim[N(T)] = 0$
 $\Rightarrow \min[N(T)] = 0$
To find $R(T)$:

To find R(T):

The standard basis of R^3 is $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$

Let
$$e_1 = (1,0,0), e_2 = (0,1,0)$$
 and $e_3 = (0,0,1)$
 $T(x, y, z) = (x + y, x - y, 2x + z)$
 $T(1,0,0) = (1 + 0,1 - 0,0 + 0)$

$$= (1,1,0)$$

$$T(0,0,0) = (0 + 1,0 - 1,0 + 0)$$

$$= (1,-1,0)$$

$$T(0,0,1) = (0 + 0,0 - 0,0 + 1)$$

$$= (0,0,1)$$
The image of usual basis span Image (
Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

This in echelon from and there are three non-zero rows.

 $\dim[R(T)] = 3$

i.e rank of T = 3

R(T) = the subspace generated by (1,1,0), (0, -2,0), (0,0,1)

$$= x(1,1,2) + y(0,-2,-2) + z(0,0,1)$$

= (x, x, 2x) + (0, -2y, -2y) + (0,0,z)

R(T) = (x, x - 2y, 2x, 2x - 2y + z)Rank + nullity = 3 = dim(R³)

Fxample 25. Find the range space, kernel, rank and nullity of the following linear transformation. Also verify the rank-nullity theorem defined by

T:
$$V_3(R) \rightarrow V_2(R)by$$

 $T(e_1) = (2,1), T(e_2) = (0,1), T(e_3) = (1,1)$
Sol: To find the kernel,

Since the linear transformation is not given, first find the linear transformation

The usual basis of R^3 is $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$

$$e_{1} = (1,0,0), e_{2} = (0,1,0), e_{3} = (0,0,1)$$
Given $T(e_{1}) = (2,1), T(e_{2}) = (0,1), T(e_{3}) = (1,1)$
 $(x_{1}, x_{2}, x_{3}) = x_{1}(1,0,0) + x_{2}(0,1,0) + x_{3}(0,0,1)$
 $= x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3}$
 $T(x_{1}, x_{2}, x_{3}) = T(x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3})$
 $= x_{1}T(e_{1}) + x_{2}T(e_{2}) + x_{3}T(e_{3})$
 $= x_{1}(2,1) + x_{2}(0,1) + x_{3}(1,1)$
 $= (2x_{1}, x_{1}) + (0, x_{2}) + (x_{3}, x_{3})$
 $= (2x_{1} + x_{3}, x_{1} + x_{2} + x_{3})$
 $N(T) = \{(x_{1}, x_{2}, x_{3}): T(x_{1}, x_{2}, x_{3}) = 0\}$
Put $T(x_{1}, x_{2}, x_{3}) = 0$
 $(2x_{1} + x_{3}, x_{1} + x_{2} + x_{3}) = (0,0)$
 $2x_{1} + x_{3} = 0 ...(1)$
 $x_{1} + x_{2} + x_{3} = 0$
 $(1) \Rightarrow x_{3} = -2x_{1}$
 $(2) \Rightarrow x_{1} + x_{2} - 2x_{1} = 0$
 $x_{2} - x_{1} = 0$
 $x_{1} = x_{2}$
 $\frac{x_{1}}{1} = \frac{x_{2}}{1}$
 $(3) \Rightarrow x_{3} = -2$
The basis of $N(T)$ is $\beta = \{(1,1,-2)\}$
 $N(T) = \text{the subspace generated by } (1,1,-2)$
 $=\{(1,1,-2)x_{1}\}$

 $=\{(x_1, x_1, -2x_1)\}$

 $\therefore \dim[N(T)] = 1$

i.e nullity (T) = 1

To find dim [R(T)]

Given $T(e_1) = (2,1), T(e_2) = (0,1), T(e_3) = (1,1)$

The image of usual basis span Image (T).

Let
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

 $= \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} R_1 \leftrightarrow R_3$
 $= \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} R_3 \rightarrow R_3 - 2R_1$
 $= \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} R_3 \rightarrow R_3 + R_2$

This is the echelon form and there are 2 non-zero rows in it. The basis of R(T) is $\gamma = \{(1,1), (0,1)\}$

 $\therefore \dim[R(T)] = 2$

i.e rank of T = 2

Range space = the subspace generated by (1,1) and (0,1)

$$= x_1(1,1) + x_2(0,1)$$
$$= (x_1, x_1) + (0, x_2)$$