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4.7.1 A Model of Neuromuscular Reflex Motion

Examination of the dynamics of neuromuscular reflex motion can yield valuable insight
into the status of patients who have neurological disorders. The model that we will consider
assumes the following test. The patient is seated comfortably and his shoulder and elbow are
held by adjustable supports so that the upper arm remains in a fixed horizontal position
throughout the test. The subject’s forearm is allowed to move only in the vertical plane. At the
start of the experiment, he is made to flex his arm by pulling on a cord that has been attached
to a cuff on his wrist. The cord runs around a pulley system and supports a sizeable weight.
The initial angle between the forearm and upper arm is 135°. The subject is not given any
specific instructions about maintaining this angle, except to relax his arm as much as possible
while supporting the weight. Then, at time ¢ = 0, an electromagnetic catch is switched off so
that an additional weight is abruptly added to the original load. Changes in angular motion,
6(¢), of the forearm about the elbow are recorded during and after the quick release of the
weight. The mathematical model used to interpret the results of this test is based on the work
of Soechting et al. (1971).

4.7.1.1. Limb Dynamics. Figure 4.10a shows a schematic diagram of the forearm,
with the black filled circle representing the elbow joint. M, represents the change in external
moment acting on the limb about the elbow joint; in this experiment, M, would be a step. M
represents the net muscular torque exerted in response to the external disturbance. Neglecting

the weight of the forearm itself, application of Newton’s Second Law yields the following
equation of motion:

M,(t) — M(t) = JO (4.91)

where J is the moment of inertia of the forearm about the elbow joint.
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4.7.1.2. Muscle Model. Although this reflex involves both the biceps and triceps
muscles, we will assume for simplicity that the net muscular torque in response to M, is
generated by a single equivalent muscle model, illustrated in Figure 4.10b. Note that in this
mechanical analog, M is treated as if it were a “force,” although it is actually a torque.
Accordingly, the “displacements” that result are in fact angular changes, 0 and 0. As such,
the muscle stiffness parameter, k, and the viscous damping parameter, B, have units consistent
with this representation. The equations of motion for the muscle model are:

M(t) = k(6 - 6,) (4.92)
and
M(r) = My(¢) + B, (4.93)

where M,(f) is the torque exerted by the muscle under isometric conditions. My(f) is
represented as a function of time, since it is dependent on the pattern of firing of the alpha
motorneurons.
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4.7.1.3. Plant Equations. By combining Equations (4.91) through (4.93), we obtain
an equation of motion that characterizes the dynamics of the plant, i.e., describing how 6

would change due to the torque exerted by the external disturbance M, and the resulting
muscular response:

%ﬁ+ﬁ+%=%m—%m (4.94)

4.7.1.4. Muscle Spindle Model. This model describes the dynamics by which
changes in € are transduced at the level of the muscle spindles into afferent neural signals.
The latter travel to the spinal cord, which sends out efferent signals to the contractile
machinery of the muscle to generate M (). We assume that the neural output of the spindle is
proportional to the amount by which its nuclear bag region is stretched, so that ultimately

My(1) = (0 — 0,) (4.95)

Figure 4.10c shows the mechanical analog of the muscle spindle model. ks and B, are
parameters that represent the elastic stiffness and viscous damping properties, respectively, of
the pole region of the spindle, while k;, represents the elastic stiffness of the nuclear bag

region. [y represents the contractile part of the pole region, which allows the operating length
of the spindle to be reset at different levels, using the gamma motorneuronal pathways. We

will assume I'y, to be constant at the equilibrium length of the spindle, so that this parameter
does not play a role in the dynamics of changes about this equilibrium length. With this
consideration in mind, the dynamics of the muscle spindle model may be characterized by the
following equations:

Ms = lI{'ss(g - 92) (496)
and
M, = B,0, + k0, (4.97)

Another important factor that must be taken into account is the fact that, although 0 is sensed
virtually instantaneously by the spindle organs, there is a finite delay before this feedback
information is finally converted into corrective action at the level of the muscle. This total
delay, Ty, includes all lags involved in neural transmission along the afferent and efferent
pathways as well as the delay taken for muscle potentials to be converted into muscular force.
Eliminating the intermediate variables, M, and 6,, from Equations (4.95) through (4.97), we
obtain the following equation for the feedback portion of the stretch reflex model:
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M, . o(r -
My+—= ﬁ(ﬂ(t - Ty) + ( T"}) (4.98)
T nt
where
BS
T = (4.99)
kss + ksp
and
c+Hk
n= % (4.100)

sp

4.7.1.5. Block Diagram of Neuromuscular Reflex Model. Taking the Laplace trans-
forms of Equations (4.94) and (4.98), we obtain the following equations that are represented
schematically by the block diagram shown in Figure 4.11:

M, (s) — My(s)

0(s) = (4.101)
s(gi s2 4+ Js + B)
k
and
M(s) = HH— e=Taf)(s) (4.102)

4.7.2 SIMULINK Implementation

The SIMULINK implementation of the neuromuscular reflex model is depicted in
Figure 4.12. This program has been saved as the file “nmreflex.mdl.” Note that the model
parameters appear in the program as variables and not as fixed constants. This gives us the
flexibility of changing the parameter values by entering them in the MATLAB command
window or running a MATLAB m-file immediately prior to running the SIMULINK
program. In this case, we have chosen the latter path and created an m-file called
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Figure 4.11 Block diagram of neuromuscular reflex model.
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Figure 4.12 SIMULINK implementation of neuromuscular reflex model.
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“nmr_var.m” that specifies the parameter values. The nominal parameter values used in the
simulation are as follows: J = 0.1kgm?, k = 50Nm, B = 2N ms, T4 =0.02s, 7 (“tau” in
Figure 4.12) =1/300s, n (“eta” in Figure 4.12) =5, and f (“beta” in Figure 4.12) = 100.
These values are consistent with the average physiological equivalents found in normal adult
humans.

Figure 4.13 displays the results of three simulation runs with “nmreflex.md1” using
the nominal parameter values mentioned above. The upper panel shows the time-course of the
external disturbance, M,, which is a step increase of SNm in the moment applied to the
forearm. The solid tracing in the lower panel represents the corresponding response in 0, the
angular displacement of the forearm, when 8 was set equal to 100. Note that positive values of
@ correspond to increases in the angle of flexion between the forearm and the upper arm.
There is a slight overshoot in 6, followed by an almost undetectable oscillation before the
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Figure 4.13 Sample results of simulations using the SIMULINK implementation of the
neuromuscular reflex model.

steady-state value of approximately 0.25 radian is attained. Note that f represents the overall
gain of the reflex arc. When f was increased to 150, the response was a damped oscillation,
but the steady-state value achieved by @ became smaller than that obtained with the nominal
value of B. In the third simulation, § was decreased to half the nominal value (i.e., 50). This
produced an overdamped response and also resulted in a larger end-value for 0. These results
reiterate the point that increased feedback gain leads to better attenuation of the effects of
imposed disturbances—higher values of § produced smaller ending values for f. On the other
hand, the responses also become more oscillatory. This issue of instability will be discussed

further in Chapter 6.
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