
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 POINTERS

 Pointers to Variables

 A pointer is a variable that stores an address of another variable of same type.

 Pointer can have any name that is legal for other variable.

 Pointer variables are declared with prefix of ‘*’ operator.

 Using a pointer variable, we can access the value of another variable assigned to

it.

Syntax

data_type *pointer_name;

Example

int *a;

 variable *a can store the address of any integer type variable.

 A pointer is a variable whose value is also an address.

 Each variable has two attributes

 Value

 Address

We can define pointers in two ways.

i) First a pointer is a variable and assigns different values to a pointer variable.

ii) Second the value contained by a pointer must be an address which indicates the

location of another variable in the memory. So, pointer is called as “address

variable”.

Example

int a=50;

int *ptr;

ptr=&a;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Here ‘a’ is a variable holds a value 50 and stored in a memory location 1001.

‘*ptr’ is pointer variable holds a address of a variable ‘a’.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Advantages of Using Pointers

 Pointers are more compact and efficient code.

 Pointers can be used to achieve clarity and simplicity.

 Pointers are used to pass information between function and its reference point.

 A pointer provides a way to return multiple data items from a function using its

function arguments.

 Pointers also provide an alternate way to access an array element.

 A pointer enables us to access the memory directly.

Example Program 2.10

/*C program for printing value and address of a variable using pointer variable*/

#include<stdio.h>

#include<conio.h>

void main()

{

int i=3;

int *ptr;

ptr=&i;

clrscr();

printf(“Address of i=%u\n”,ptr);

printf(“value of i=%d\n”,*ptr);

getch();

}

Output:

Address of i=65524

value of i=3

Example Program 2.11

/*C program for printing value and address of a variable using pointer variable by

various methods*/

#include<stdio.h>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

#include<conio.h>

void main()

{

int i=4;

int *j;

j=&i;

clrscr();

printf(“Address of i=%u\n”,&i);

printf(“Address of i=%u\n”,j);

printf(“Address of j=%u\n”,&j);

printf(“value of j=%u\n”,j);

printf(“value of i=%d\n”,i);

printf(“value of i=%d\n”,*(&i));

printf(“value of i=%d\n”,*j);

getch();

}

Output

Address of i=65524

Address of i=65524

Address of j=65522

value of j=65524

value of i=4

value of i=4

value of i=4

Example Program 2.12

/*C program to add two numbers using pointers*/

#include<stdio.h>

#include<conio.h>

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

void main()

{

int a,b,*p,*q,sum;

clrscr();

printf(“Enter two integers”);

scanf(“%d %d”,&a,&b);

p=&a;

q=&b;

sum=*p+*q;

printf(“sum=%d”,sum);

getch();

}

Output

Enter two integers 2 3

sum=5

 Pointer operators

a) Referencing a pointer

 A pointer variable is made to refer to an object.

 Reference operator(&) is used for this.

 Reference operator is also known as address of (&) operator.

Example

float a=12.5;

float *p;

p=&a;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

b) Dereferencing a pointer

 The object referenced by a pointer can be indirectly accessed by

dereferencing the pointer.

 Dereferencing operator (*) is used for this.

 This operator is also known as indirection operator or value- at-operator.

Example

int b;

int a=12;

a int *p;

Example program 2.13

#include<stdio.h>

void main()

{

int a=12;

int *p;

int **pptr;

p=&a;

pptr=&p;

printf(“Value=%d”,a);

printf(“value by dereferencing p is %d \n”,*p);

printf(“value by dereferencing pptr is %d \n”,**pptr);

printf(“value of p is %u \n”,p);

printf(“value of pptr is %u\n”,pptr);

}

Output

Value=12

value by dereferencing p is 12

value by dereferencing pptr is 12

value of p is 1000

value of pptr is 2000

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Arrays and pointers

 Array elements are always stored in consecutive memory locations according to

the size of the array.

 The size of the variable with the pointer variables refers to, depends on the data

type pointed by the pointer.

 A pointer when incremented, always points to a location after skipping the

number of bytes required for the data type pointed to by it.

Example

int a[5]={10,20,30,40,50};

a[5] means the array ‘a’ has 5 elements and of integer data type

Program 2.14

/*C program to print the value and address of an array elements*/

#include<stdio.h>

#include<conio.h>

void main()

{

int a[5]={10,20,30,40,50};

int i;

clrscr();

for(i=0;i<5;i++)

{

printf(“The value of a[%d]=%d\n”,i,a[i]);

printf(“Address of a[%d]=%u\n”,i,&a[i]);

}

getch();

}

Output

The value of a[0]=10

Address of a[0]=4000

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

The value of a[1]=20

Address of a[1]=4002

The value of a[2]=10

Address of a[2]=4004

The value of a[3]=10

Address of a[3]=4006

The value of a[4]=10

Address of a[4]=4008

Example Program 2.15

/*C program to print the value and address of an array elements using pointer*/

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[5]={10,20,30,40,50};

int i,*p;

p=arr;

clrscr();

for(i=0;i<=5;i++)

{

printf(“\nAddress=%u\t”,(p+i));

printf(“Element=%d”,*(p+i));

}

getch();

}

Output

Address 4000 Element=10

Address 4002 Element=20

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Address 4004 Element=30

Address 4006 Element=40

Address 4008 Element=50

Example Program 2.16

/*C program to add sum of elements of an array using pointer*/

#include<stdio.h>

main()

{

int i,sum;

int arr[5];

int *ptr;

for(i=0;i<5;i++)

{

printf (“Enter the number”);

scanf(“%d”,&arr[i]);

}

ptr=arr;

for(i=0;i<5;i++)

{

sum=sum+*ptr

Functions and Pointers 3.29

ptr=ptr+1;

}

printf(“Total=%d”,sum);

}

Output

Enter the number

10

20

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

30

40

50

Total= 150

 Pointers with Multi-Dimensional Array

 A multi-dimensional array can also be represented with an equivalent pointer

notation. A two dimensional array can be considered as a collection of one-

dimensional arrays.

Syntax

data_type (*pointer variable) [expression];

data_type array name[expression 1][expression 2];

Example Program 2.17

/*C program to print the value and address of the element using array of

pointers*/

#include<stdio.h>

#include<conio.h>

void main()

{

int * int *a[3];

int b=10,c=20,d=30,i;

a[0]=&b;

a[1]=&c;

a[2]=&d;

clrscr();

for(i=0;i<3;i++)

{

printf(“Address=%u\n”,a[i]);

printf(“Value=%d\n”,*(a[i]));

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

getch();

}

Output

Address=4000

Value=10

Address=5000

Value=20

Address=6000

Value=30

 Functions Pointers

 Function pointers in C can be used to create function calls to which they point.

This allows programmers to pass them to functions as arguments. Such

functions passed as an argument to other functions are also called callback

functions.

 In C programming, it is also possible to pass addresses as arguments to

functions. To accept these addresses in the function definition, we can use

pointers. It's because pointers are used to store addresses.

Example Program 2.18

Write a C Program for Swapping of two numbers using function pointers.

#include <stdio.h>

void swap(int *n1, int *n2);

int main()

{

int num1 = 5, num2 = 10;

// address of num1 and num2 is passed

swap(&num1, &num2);

printf("num1 = %d\n", num1);

printf("num2 = %d", num2);

return 0;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

}

void swap(int* n1, int* n2)

{

}

Output

int temp;

temp = *n1;

*n1 = *n2;

*n2 = temp;

num1 = 10

num2 = 5

 The address of num1 and num2 are passed to the swap() function using

swap(&num1, &num2);

 When *n1 and *n2 are changed inside the swap() function, num1 and num2

inside the main() function are also changed.

 Inside the swap() function, *n1 and *n2 swapped. Hence, num1 and num2 are

also swapped.

	POINTERS
	Pointers to Variables
	Syntax
	Example
	Example (1)
	Advantages of Using Pointers
	Example Program 2.10
	/*C program for printing value and address of a variable using pointer variable*/

	Output:
	Example Program 2.11
	/*C program for printing value and address of a variable using pointer variable by various methods*/

	Output
	Example Program 2.12
	/*C program to add two numbers using pointers*/

	Output (1)

	Pointer operators
	a) Referencing a pointer
	Example
	b) Dereferencing a pointer
	Example (1)
	Example program 2.13
	Output

	Arrays and pointers
	Example
	Program 2.14
	/*C program to print the value and address of an array elements*/

	Output
	Example Program 2.15
	/*C program to print the value and address of an array elements using pointer*/

	Output (1)
	Example Program 2.16
	/*C program to add sum of elements of an array using pointer*/

	Output (2)

	Pointers with Multi-Dimensional Array
	Syntax
	Example Program 2.17
	Output

	Functions Pointers
	Example Program 2.18

