
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

PIPELINE HAZARDS

There are situations in pipelining when the next instruction cannot execute in the

following clock cycle. These events are called hazards, and there are three different types.

Hazards

• Structural Hazards

• Data Hazards

• Control Hazards

STRUCTURAL HAZARD

❖ Structural Hazard occurs when a planned instruction cannot execute in the proper

clock cycle because the hardware does not support the combination of instructions

that are set to execute.

❖ A structural hazard in the laundry room would occur if we used a washer dryer

combination instead of a separate washer and dryer, or if our roommate was busy doing

something else and wouldn’t put clothes away. Our carefully scheduled pipeline plans would then

be foiled.

FIGURE 3.15 Single-cycle, non-pipelined execution in top versus pipelined execution in

bottom.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

As we said above, the MIPS instruction set was designed to be pipelined, making it fairly easy

for designers to avoid structural hazards when designing a pipeline. Suppose, however, that we

had a single memory instead of two memories. If the pipeline in Figure 3.15 had a fourth

instruction, we would see that in the same clock cycle the first instruction is accessing data from

memory while the fourth instruction is fetching an instruction from that same memory.

Without two memories, our pipeline could have a structural hazard.

DATA HAZARDS

❖ It is also called a pipeline data hazard. When a planned instruction cannot execute in the

proper clock cycle because data that is needed to execute the instruction is not yet

available.

❖ Data hazards occur when the pipeline must be stalled because one step must wait

foranother to complete.

❖ In a computer pipeline, data hazards arise from the dependence of one instruction on

an earlier one that is still in the pipeline. For example, suppose we have an add

instruction followed immediately by a subtract instruction that uses the sum ($s0):

add $s0, $t0, $t1 sub

$t2, $s0, $t3

❖ Without intervention, a data hazard could severely stall the pipeline. The add

instruction doesn’t write its result until the fifth stage, meaning that we would have to

waste three clock cycles in the pipeline.

❖ To resolve the data hazard, for the code sequence above, as soon as the ALU creates the

sum for the add operation, we can supply it as an input for the subtract. This is done by

adding extra hardware to retrieve the missing item early from the internal resources is

called forwarding or bypassing.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

❖ Figure below shows the connection to forward the value in $s0 after the

execution stage of the add instruction as input to the execution stage of the sub

instruction.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

Fig 3.16: Graphical representation of forwarding

❖ Forwarding paths are valid only if the destination stage is later in time than the source

stage. For example, there cannot be a valid forwarding path from the output of the memory

access stage in the first instruction to the input of the execution stage of the following,

since that would mean going backward in time.

❖ Forwarding cannot prevent all pipeline stalls, suppose the first instruction was a load of

$s0 instead of an add, So desired data would be available only after the fourth stage of the

first instruction in the dependence, which is too late for the input of the third stage of sub

instruction.

❖

lw $s0, 20($t1)

sub $t2, $s0, $t3

Even with forwarding, we would have to stall one stage for a load-use data hazard, this

figure shows below an important pipeline concept, officially called a pipeline stall, but

often given the nickname bubble.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

A stall even with forwarding when an R-format instruction following a load tries to use

the data.

CONTROL HAZARDS

❖ It is also called as branch hazard. When the proper instruction cannot execute in the

proper pipeline clock cycle because the instruction that was fetched is not the one that

is needed; that is, the flow of instruction addresses is not what the pipeline expected.

❖ A control hazard, arising from the need to make a decision based on the results of one

instruction while others are executing.

❖ Even with this extra hardware, the pipeline involving conditional branches would look

like figure 3.18. The lw instruction, executed if the branch fails, is stalled one extra 200

ps clock cycle before starting.

❖ The equivalent decision task in a computer is the branch instruction. Notice that we

must begin fetching the instruction following the branch on the very next clock cycle.

Nevertheless, the pipeline cannot possibly know what the next instruction should be,

since it only just received the branch instruction from memory.

❖ One possible solution is to stall immediately after we fetch a branch, waiting until the

pipeline determines the outcome of the branch and knows what instruction address to

fetch from. Let’s assume that we put in enough extra hardware so that we can test

registers, calculate the branch address, and update the PC during the second stage of the

pipeline.

Pipeline showing stalling on every conditional branch as solution to control hazards.

BRANCH PREDICTION

A method of resolving a branch hazard that assumes a given outcome for the branch and

proceeds from that assumption rather than waiting to ascertain the actual outcome.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

Static branch prediction

A more sophisticated version of branch prediction would have some branches

predicted as taken and some as untaken. In the case of programming, at the bottom of loops are

branches that jump back to the top of the loop. Since they are likely to be taken and they branch

backward, we could always predict taken for branches that jump to an earlier address.

Dynamic branch prediction

Dynamic hardware predictors, in stark contrast, make their guesses depending on thebehavior

of each branch and may change predictions for a branch over the life of a program. Following

our analogy, in dynamic prediction a person would look at how dirty the uniform was and guess

at the formula, adjusting the next prediction depending on the success of recent guesses. One

popular approach to dynamic prediction of branches is keeping a history for each branch as

taken or untaken, and then using the recent past behavior to predict the future.

PIPELINED DATAPATH

Figure 3.19 shows the single-cycle datapath from with the pipeline stages identified. The

division of an instruction into five stages means a five-stage pipeline, which in turn means that

up to five instructions will be in execution during any single clock cycle. Thus, we

mustseparate the datapath into five pieces, with each piece named corresponding to a stage of

instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register fi le read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

❖ In Figure 3.19, these five components correspond roughly to the way the datapath is drawn;

instructions and data move generally from left to right through the five stages as they

complete execution.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

Fig 3.19: The single-cycle datapath

❖ Returning to our laundry analogy, clothes get cleaner, drier, and more organized as they

move through the line, and they never move backward. There are, however, two exceptions

to this left -to-right flow of instructions:

■ The write-back stage, which places the result back into the register fi le in the

middle of the datapath

■ The selection of the next value of the PC, choosing between the

incremented PC and the branch address from the MEM stage

❖ Data flowing from right to left does not affect the current instruction; these reverse data

movements influence only later instructions in the pipeline. Note that the fi rst right-to-left

flow of data can lead to data hazards and the second leads to control hazards.

❖ One way to show what happens in pipelined execution is to pretend that each instruction

has its own datapath, and then to place these datapaths on a timeline to show their

relationship. Figure 3.20 shows the execution of the instructions in Figure 4.27 by

displaying their private datapaths on a common timeline. Instead, we add registers to hold

data so that portions of a single datapath can be shared during instruction execution.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

Instructions being executed using the single-cycle datapath in Figure 3.19, assuming

pipelined execution.

❖ For example, as Figure 4.34 shows, the instruction memory is used during only one of the

five stages of an instruction, allowing it to be shared by following instructions during the

other four stages.

❖ To retain the value of an individual instruction for its other four stages, the value read from

instruction memory must be saved in a register. Returning to our laundry analogy, we might

have a basket between each pair of stages to hold the clothes for the next step.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

The pipelined version of the data path

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

❖ Figure 3.21 shows the pipelined data path with the pipeline registers highlighted. All

instructions advance during each clock cycle from one pipeline register to the next. The

registers are named for the two stages separated by that register. For example, the pipeline

register between the IF and ID stages is called IF/ID. Notice that there is no pipeline register

at the end of the write-back stage.

aAll instructions must update some state in the processor—the register file, memory, or the

PC.

EXECUTION OF load INSTRUCTION IN A PIPELINED DATAPATH

Figures 3.22 through 3.24, show the active portions of the datapath highlighted as a load

instruction goes through the five stages of pipelined execution. The five stages are the following:

1. Instruction fetch: The top portion of Figure 3.22 shows the instruction being read from memory

using the address in the PC and then being placed in the IF/ID pipeline register. The PC address

is incremented by 4 and then written back into the PC to be ready for the next clock cycle.

Instruction decode and register file read: The bottom portion of Figure 3.22 shows

theinstruction portion of the IF/ID pipeline register supplying the 16-bit immediate field,

whichis sign-extended to 32 bits, and the register numbers to read the two registers. All three

values are stored in the ID/EX pipeline register, along with the incremented PC address.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET
 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

IF and ID: First and second pipe stages of an instruction, with the active portions of

the data path in highlighted.

3. Execute or address calculation: Figure 3.23 shows that the load instruction reads the

contents of register 1 and the sign-extended immediate from the ID/EX pipeline register and

adds them using the ALU. That sum is placed in the EX/MEM pipeline register.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET

 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

The third pipe stage of a load instruction, highlighting the portions of the data path

in used in this pipe stage.

4. Memory access: The top portion of Figure 3.24 shows the load instruction

reading thedata memory using the address from the EX/MEM pipeline register and

loading the data into the MEM/WB pipeline register. 5.Write-back: The bottom portion

of Figure 3.24 shows the final step: reading the data from the MEM/WB pipeline register

and writing it into the register file in the middle of the figure. This walk-through of the

load instruction shows that any information needed in a later pipe stage must be passed

to that stage via a pipeline register.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET

 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

FIGURE 3.24 MEM and WB: The fourth and fifth pipe stages of a load instruction,

highlighting the portions of the datapath in Figure 3.21 used in this pipe stage.

EXECUTION OF Store INSTRUCTION IN A PIPELINED DATAPATH

Walking through a store instruction shows the similarity of instruction execution, as

well as passing the information for later stages. Here are the five pipe stages of the store

instruction:

1. Instruction fetch: The instruction is read from memory using the address in the

PC andthen is placed in the IF/ID pipeline register. This

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET

 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

stage occurs before the instruction is identified, so the top portion of Figure

3.25 works for store as well as load.

The third pipe stage of a store instruction

2. Instruction decode and register file read: The instruction in the IF/ID pipeline

register supplies the register numbers for reading two registers and extends the sign of

the 16-bit immediate. These three 32-bit values are all stored in the ID/EX pipeline

register. The bottom portion of Figure 3.25 for load instructions also shows the

operations of the second stage for stores. These first two stages are executed by all

instructions, since it is too early to know the type of the instruction.

3. Execute and address calculation: Figure 3.26 shows the third step; the effective

address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 3.26 shows the data being written to

memory.Note that the register containing the data to be stored was read in an earlier

stage and stored in ID/EX. The only way to make the data available during the MEM stage

is to place the data into the EX/MEM pipeline register in the EX stage, just as we stored

the effective address into EX/MEM.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET

 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

MEM and WB: The fourth and fifth pipe stages of a store

instruction.

5. Write-back: The bottom portion of Figure 3.26 shows the final step of the store.

For this instruction, nothing happens in the write-back stage.

For the store instruction we needed to pass one of the registers read in the ID

stage to the MEM stage, where it is stored in memory. The data was first placed in the

ID/EX pipeline register and then passed to the EX/MEM pipeline register.

PIPELINED CONTROL

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEVIVISALAKSHI.G-AP/CSE/RCET

 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

Adding control to the pipelined data path is referred to as pipelined control. It is started

with a simple design that views the problem through pipeline bars in between the

stages. The first step is to label the control lines on the existing data path. Figure 3.27

shows those lines.

The pipelined data path with the control signals

identified.

To specify control for the pipeline, we need only set the control values during each

pipeline stage. Because each control line is associated with a component active in only

a single pipeline stage, we can divide the control lines into five groups according to

the Pipe line stage.

1. Instruction fetch: The control signals to read instruction memory and to write the PC

arealways asserted, so there is nothing special to control in this pipeline stage.

2. Instruction decode/register file read: As in the previous stage, the same thing

happens atevery clock cycle, so there are no optional control lines to set.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

DEVIVISALAKSHI.G-AP/CSE/RECT

 CS3351-DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION

3. Execution/address calculation: The signals to be set are RegDst, ALUOp, and ALUSrc(see

Figures 4.48). The signals select the Result register, the ALU operation, and either Read data

2 or a sign-extended immediate for the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead, and Mem

Write.The branch equal, load, and store instructions set these signals, respectively. Recall

that PCSrc in Figure 4.48 selects the next sequential address unless control asserts Branch

and the ALU result was 0.

Write-back: The two control lines are MemtoReg, which decides between sending theALU

result or the memory value to the register file, and Reg-Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged, we can use

the same control values.

FIGURE 3.27: The control lines for the final three stages.

Implementing control means setting the nine control lines to these values in each stage for

each instruction. The simplest way to do this is to extend the pipeline registers to include

control information. Since the control lines start with the EX stage, we can create the

control information during instruction decode. Figure 3.27 above shows that these control

signals are then used in the appropriate pipeline stage as the instruction moves down the

pipeline.

	PIPELINE HAZARDS
	Hazards
	STRUCTURAL HAZARD
	FIGURE 3.15 Single-cycle, non-pipelined execution in top versus pipelined execution in bottom.
	DATA HAZARDS
	add $s0, $t0, $t1 sub $t2, $s0, $t3
	A stall even with forwarding when an R-format instruction following a load tries to use the data.
	Pipeline showing stalling on every conditional branch as solution to control hazards.
	Static branch prediction
	Dynamic branch prediction
	PIPELINED DATAPATH
	Fig 3.19: The single-cycle datapath
	Instructions being executed using the single-cycle datapath in Figure 3.19, assuming pipelined execution.
	The pipelined version of the data path
	EXECUTION OF load INSTRUCTION IN A PIPELINED DATAPATH
	IF and ID: First and second pipe stages of an instruction, with the active portions of the data path in highlighted.
	The third pipe stage of a load instruction, highlighting the portions of the data path in used in this pipe stage.
	FIGURE 3.24 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of the datapath in Figure 3.21 used in this pipe stage.
	The third pipe stage of a store instruction
	MEM and WB: The fourth and fifth pipe stages of a store instruction.
	PIPELINED CONTROL
	The pipelined data path with the control signals
	FIGURE 3.27: The control lines for the final three stages.

