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3.3 ANALYSIS OF DT SYSTEMS 

IMPULSE RESPONSE 

LTI SYSTEM WITH AND WITHOUT MEMORY 

Convolution is given by 𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
 

Convolution is commutative  𝑦(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏
∞

−∞
 

 A CT system is memoryless if present output depends on present input. Above 

condition is true only for ℎ(𝜏) = 𝑘𝛿(𝜏) and such a memory system has the form 

𝑦(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏
∞

−∞

 

𝑦(𝑡) = ∫ 𝑥(𝑡 − 𝜏)𝑘𝛿(𝜏)𝑑𝜏
∞

−∞

 

= 𝑘𝑥(𝑡) ∗ 𝛿(𝑡)------(1) 

We know that, 𝑥(𝑡) ∗ 𝛿(𝑡) = 𝑥(𝑡) 

(1)→  𝑦(𝑡) = 𝑘𝑥(𝑡) 

K is the constant 

The system is memory less or static if  

ℎ(𝑡) = 𝛿(𝑡) − − − −(2) 

If (2) is not satisfied system is dynamic system 

Hence the output is equal to the input, this system becomes an identity system. 
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INVERTIBILITY OF LTI SYSTEM 

 Consider a CT LTI system with impulse response h(t). This system is 

invertible, if it has an LTI inverse system. 

We know, for an identity system 

𝑥(𝑡) ∗ 𝛿(𝑡) = 𝑥(𝑡) 

The impulse response of an inverse system should satisfy the condition  

ℎ(𝑡) ∗ ℎ1(𝑡) = 𝛿(𝑡) 

CAUSALITY FOR LTI SYSTEM 

 For a system to be causal, the output of the system must depend on present 

and past inputs only. 

∴ ℎ(𝑡) = 0 𝑓𝑜𝑟 𝑡 < 0 

The convolution integral becomes 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

∞

 

𝑦(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏
∞

0

 

STABILITY OF LTI SYSTEM 

For a LTI system to be stable 

∫ ⃒ℎ(𝜏)⃒𝑑𝜏 < ∞
∞

−∞
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FOURIER METHOD FOR ANALYSIS 

FREQUENCY RESPONSE OF LTI SYSTEM 

Consider a LTI system 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) 

Take Fourier transform on both sides 

𝑌(𝑗𝜔) = 𝑋(𝑗𝜔). 𝐻(𝑗𝜔) − − − − − (1) 

Convolution in time domain gives multiplication in frequency domain. 

Where, 𝐻(𝑗𝜔) 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

𝐻(𝑗𝜔) =
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
 

Magnitude of equation (1) is 

⃒𝑌(𝑗𝜔)⃒ = ⃒𝑋(𝑗𝜔)⃒. ⃒𝐻(𝑗𝜔)⃒ 

⃓𝐻(𝑗𝜔)⃓ 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

phase of equation (1) is 

∠𝑌(𝑗𝜔) = ∠𝑋(𝑗𝜔). ∠𝐻(𝑗𝜔) 

∠𝐻(𝑗𝜔) 𝑖𝑠 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

ANALYSIS AND CHARACTERIZATION OF LTI SYSTEM USING 

LAPLACE TRANSFORM 

Output of the system is given by  

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) 
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Taking Laplace Transform on both sides. 

𝑌(𝑆) = 𝑋(𝑆). 𝐻(𝑆) 

Where, 𝐻(𝑆) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

If 𝑆 = 𝑗𝜔, then 𝐻(𝑆) is frequency response of LTI system. 

CAUSALITY: 

For causal LTI system  

ℎ(𝑡) = 0 𝑓𝑜𝑟 𝑡 < 0 

1. ROC for a causal system is in the right half plane. 

2. ROC for causal system with rational system is right half plane to right of right 

most pole. 

STABILITY: 

An LTI system is stable if and only if ROC of its system function 𝐻(𝑆) 

includes 𝑗𝜔 axis .𝑖𝑒, 𝑅𝑒(𝑆) = 0 

A causal system with rational system function is stable if and only if all 

poles(X) of 𝐻(𝑆) lie in left half of S-plane. 
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