
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

TYPES AND DECLARATIONS

 Type checking uses logical rules to reason about the behavior of a program at run time. Specifically, it

ensures that the types of the operands match the type expected by an operator.

 Translation Applications. From the type of a name, a compiler can determine the storage that will be

needed for that name at run time.

Type Expressions:

 Types have structure, represented using type expressions: a type expression is either a basic type or is

formed by applying an operator called a type constructor to a type expression. The sets of basic types

and constructors depend on the language to be checked.

 The array type int[2][3] can be read as "array of 2 arrays of 3 integers each" and written as a type

expression array(2, array(3, integer)). This type is represented by the tree. The operator array takes two

parameters, a number and a type.

 A basic type is a type expression. Typical basic types for a language include boolean, char, integer, float,

and void (denotes "the absence of a value.")

 A type name is a type expression.

 A type expression can be formed by applying the array type constructor to a number and a type

expression.

 A record is a data structure with named fields. A type expression can be formed by applying the record

type constructor to the field names and their types. Record types will be implemented by applying the

constructor record to a symbol table containing entries for the fields.

 A type expression can be formed by using the type constructor  for function types. We write st for

"function from type s to type t" Function types will be useful when type checking.

 If s and t are type expressions, then their Cartesian product s x t is a type expression. Products are

introduced for completeness; they can be used to represent a list or tuple of types (e.g., for function

parameters). We assume that x associates to the left and that it has higher precedence than.

 Type expressions may contain variables whose values are type expressions.

Type Equivalence:

 When are two type expressions equivalent? Many type-checking rules have the form, "if two type

expressions are equal then return a certain type else error."

 Potential ambiguities arise when names are given to type expressions and the names are then used in

subsequent type expressions.

 The key issue is whether a name in a type expression stands for itself or whether it is an abbreviation

for another type expression.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

DECLARATIONS:

A simplified grammar that declares just one name at a time

 The above grammar deals with basic and array types. Nonterminal D generates a sequence of

declarations. Nonterminal T generates basic, array, or record types.

 Nonterminal B generates one of the basic types int and float. Nonterminal C, for "component," generates

strings of zero or more integers, each integer surrounded by brackets.

 An array type consists of a basic type specified by B, followed by array components specified by

nonterminal C.

 A record type (the second production for T) is a sequence of declarations for the fields of the record, all

surrounded by curly braces.

Sequences of Declarations:

 Languages such as C and Java allow all the declarations in a single procedure to be processed as a group.

A variable offset, is used to keep track of the next available relative address.

 The translation scheme deals with a sequence of declarations of the form T id, where T generates a type.

Before the first declaration is considered, offset is set to 0.

 As each new name x is seen, x is entered into the symbol table with its relative address set to the current

value of offset, which is then incremented by the width of the type of x.

 The semantic action within the production D  T id; D1 creates a symbol table entry by executing

top.put(id.lexeme, T.type, offset). Here top denotes the current symbol table.

 The method top.put creates a symbol table entry for id.lexeme, with type T.type and relative address

offset in its data area.

TRANSLATION OF EXPRESSIONS

 An expression with more than one operator, like a+b*c, will translate into instructions with at most one

operator per instruction.

 An array references A[i][j] will expand into a sequence of three-address instructions that calculate an

address for the reference.

Operations with Expressions:

 The syntax-directed definition builds up the three-address code for an assignment statement S using

attribute code for S and attributes addr and code for an expression E.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3501 – COMPILER DESIGN

 Attributes S.code and E.code denote the three-address code for S and E, respectively. Attribute E.addr

denotes the address that will hold the value of E.

 The last production Eid has the semantic rule which defines E.addr to point to the symbol-table entry

for this instance of id. Let top denote the current symbol table.

 Function top.get retrieves the entry when it is applied to the string representation id.lexeme of this

instance of id. E.code is set to the empty string.

 The semantic rules for EEl + E2 , generate code to compute the value of E from the values of El and

E2. Values are computed into newly generated temporary names.

 If El is computed into E1.addr and E2 into E2.addr, then El + E2 translates into t= E1.addr + E2.addr,

where t is a new temporary name. E. addr is set to t. A sequence of distinct temporary names t1, t2 , . .

is created by successively executing new Temp().

 E.code is built by concatenating E1.code, E2.code and an instruction that adds the values of E1 and E2.

