ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

TYPES AND DECLARATIONS

Type checking uses logical rules to reason about the behavior of a program at run time. Specifically, it
ensures that the types of the operands match the type expected by an operator.

Translation Applications. From the type of a name, a compiler can determine the storage that will be
needed for that name at run time.

Type Expressions:

Types have structure, represented using type expressions: a type expression is either a basic type or is
formed by applying an operator called a type constructor to a type expression. The sets of basic types
and constructors depend on the language to be checked.

The array type int[2][3] can be read as "array of 2 arrays of 3 integers each™ and written as a type
expression array(2, array(3, integer)). This type is represented by the tree. The operator array takes two
parameters, a number and a type.

array
- ey
- e
2 array
P
3 mteger

A basic type is a type expression. Typical basic types for a language include boolean, char, integer, float,
and void (denotes "the absence of a value.")

A type name is a type expression.

A type expression can be formed by applying the array type constructor to a number and a type
expression.

A record is a data structure with named fields. A type expression can be formed by applying the record
type constructor to the field names and their types. Record types will be implemented by applying the
constructor record to a symbol table containing entries for the fields.

A type expression can be formed by using the type constructor - for function types. We write s>t for
"function from type s to type t" Function types will be useful when type checking.

If s and t are type expressions, then their Cartesian product s X t is a type expression. Products are
introduced for completeness; they can be used to represent a list or tuple of types (e.g., for function
parameters). We assume that x associates to the left and that it has higher precedence than->.

Type expressions may contain variables whose values are type expressions.

Type Equivalence:

When are two type expressions equivalent? Many type-checking rules have the form, "if two type
expressions are equal then return a certain type else error.”

Potential ambiguities arise when names are given to type expressions and the names are then used in
subsequent type expressions.

The key issue is whether a name in a type expression stands for itself or whether it is an abbreviation
for another type expression.

CS3501 — COMPILER DESIGN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

DECLARATIONS:
A simplified grammar that declares just one name at a time

D = Tid;D | ¢

T =+ BC | record '{" D'}V
B = int | float

C 9 € [pum]1C

e The above grammar deals with basic and array types. Nonterminal D generates a sequence of
declarations. Nonterminal T generates basic, array, or record types.

e Nonterminal B generates one of the basic types int and float. Nonterminal C, for "component,” generates
strings of zero or more integers, each integer surrounded by brackets.

e An array type consists of a basic type specified by B, followed by array components specified by
nonterminal C.

e A record type (the second production for T) is a sequence of declarations for the fields of the record, all
surrounded by curly braces.

Sequences of Declarations:

e Languages such as C and Java allow all the declarations in a single procedure to be processed as a group.

A variable offset, is used to keep track of the next available relative address.

P = { offset = 0; }
D
D — Tid ; { top.put(id.lexeme, T.type, offset);
offset = offset + T.width; }
D,
D — ¢
e The translation scheme deals with a sequence of declarations of the form T id, where T generates a type.
Before the first declaration is considered, offset is set to 0.
e Aseach new name x is seen, x is entered into the symbol table with its relative address set to the current
value of offset, which is then incremented by the width of the type of x.
e The semantic action within the production D - T id; D1 creates a symbol table entry by executing
top.put(id.lexeme, T.type, offset). Here top denotes the current symbol table.
e The method top.put creates a symbol table entry for id.lexeme, with type T.type and relative address
offset in its data area.
TRANSLATION OF EXPRESSIONS
e An expression with more than one operator, like a+b*c, will translate into instructions with at most one
operator per instruction.
e An array references A[i][j] will expand into a sequence of three-address instructions that calculate an
address for the reference.
Operations with Expressions:
e The syntax-directed definition builds up the three-address code for an assignment statement S using
attribute code for S and attributes addr and code for an expression E.

CS3501 — COMPILER DESIGN

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Attributes S.code and E.code denote the three-address code for S and E, respectively. Attribute E.addr
denotes the address that will hold the value of E.

PRODUCTION SEMANTIC RULES
S = id=E ; | S.code = E.code ||
gen(top. get(id.lezeme) '=" E.addr)
E — E + E; | E.addr = new Temp()
E.code = E,.code || E».code ||
gen(E.addr'=" E;.addr'+' E,.addr)
- E, | E.addr = new Temp ()
\ E.code = F.code ||
| gen(E .addr '=' 'minus’ E,.addr)
| (E;) l E.addr = E,.addr
| E.code = E\.code
| id E.addr = top.get(id. lezeme)
E.code ="'

The last production E->id has the semantic rule which defines E.addr to point to the symbol-table entry
for this instance of id. Let top denote the current symbol table.

Function top.get retrieves the entry when it is applied to the string representation id.lexeme of this
instance of id. E.code is set to the empty string.

The semantic rules for E>EI + E2 , generate code to compute the value of E from the values of El and
E2. Values are computed into newly generated temporary hames.

If El is computed into E1.addr and E2 into E2.addr, then El + E2 translates into t= E1.addr + E2.addr,
where t is a new temporary name. E. addr is set to t. A sequence of distinct temporary names t1, t2, . .
is created by successively executing new Temp().

E.code is built by concatenating E1.code, E2.code and an instruction that adds the values of E1 and E2.

CS3501 — COMPILER DESIGN

