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k-Nearest-Neighbor Algorithm 

 

 

 Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a  

given test tuple with training tuples that are similar to it.  

 The training tuples are described by n attributes. Each tuple represents a point in an n-

dimensional space. In this way, all of the training tuples are stored in an n-dimensional 

pattern space. When given an unknown tuple, a k-nearest-neighbor classifier searches the 

pattern space for the k training tuples that are closest to the unknown tuple. These k training 

tuples are the k nearest neighbors of the unknown tuple.  

 Closeness is defined in terms of a distance metric, such as Euclidean distance.  

 The Euclidean distance between two points or tuples, say, X1 = (x11, x12, … , x1n) and  

X2 = (x21, x22, … ,x2n), is 

   

In other words, for each numeric attribute, we take the difference between the 

corresponding values of that attribute in tuple X1and in tuple X2, square this difference, 

and accumulate it. The square root is taken of the total accumulated distance count. Min-

Max normalization can be used to transforma value v of a numeric attribute A to v0 in the 

range [0, 1] by computing 

    

 

Where minA and maxA are the minimum and maximum values of attribute A 

 

For k-nearest-neighbor classification, the unknown tuple is assigned the mostcommon class among 

its k nearest neighbors.  

When k = 1, the unknown tuple is assigned the class of the training tuple that is closest to it in 

pattern space.  

Nearest neighbor classifiers can also be used for prediction, that is, to return a real-valued  
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prediction for a given unknown tuple.  

In this case, the classifier returns the average value of the real-valued labels associated with the k 

nearest neighbors of the unknown tuple.  

 

SVM—SUPPORT VECTOR MACHINES 

 

 A new classification method for both linear and nonlinear data  

 It uses a nonlinear mapping to transform the original training data into a higher dimension  

 With the new dimension, it searches for the linear optimal separating hyper plane (i.e., 

“decision boundary”)  

 With an appropriate nonlinear mapping to a sufficiently high dimension, data from two 

classes can always be separated by a hyper plane  

 SVM finds this hyper plane using support vectors (“essential” training tuples) and margins 

(defined by the support vectors)  

 Features: training can be slow but accuracy is high owing to their ability to model complex 

nonlinear decision boundaries (margin maximization)  

 Used both for classification and prediction  

Applications: 

Handwritten digit recognition,  

Object recognition  

Speaker identification,  

Benchmarking time-series prediction tests  
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A separating hyper plane can be written as  

W ● X + b = 0  

Where W={w1, w2, …, wn} is a weight vector and b a scalar (bias) 

For 2-D it can be written as  

w0 + w1 x1 + w2 x2 = 0  

The hyper plane defining the sides of the margin:  

H1: w0 + w1 x1 + w2 x2 ≥ 1 for yi = +1, and  

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1 

 

Any training tuples that fall on hyper planes H1 or H2 (i.e., the sides defining the margin) are 

support vectors  

 This becomes a constrained (convex) quadratic optimization problem: Quadratic objective 

function and linear constraints  Quadratic Programming (QP)  Lagrangian multipliers  
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LINEAR REGRESSION 

 

Linear regression: involves a response variable y and a single predictor variable x  

y = w0 + w1 x  

Where w0 (y-intercept) and w1 (slope) are regression coefficients  

 Method of least squares: estimates the best-fitting straight line  

 Multiple linear regression: involves more than one predictor variable  

 Training data is of the form (X1, y1), (X2, y2),…, (X|D|, y|D|)  

 Ex. For 2-D data, we may have: y = w0 + w1 x1+ w2 x2  

 Solvable by extension of least square method or using SAS, S-Plus  

 Many nonlinear functions can be transformed into the above  

 

Nonlinear Regression 

 

Some nonlinear models can be modeled by a polynomial function  

A polynomial regression model can be transformed into linear regression model. For example,  

y = w0 + w1 x + w2 x2 + w3 x3  

Convertible to linear with new variables: x2 = x2, x3= x3  

y = w0 + w1 x + w2 x2 + w3 x3  

 Other functions, such as power function, can also be transformed to linear model  

 Some models are intractable nonlinear (e.g., sum of exponential terms)  

Possible to obtain least square estimates through extensive calculation on more complex 

formulae 


