
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

UNIT I ROLE OF ALGORITHMS IN COMPUTING & COMPLEXITY

ANALYSIS

Algorithms – Algorithms as a Technology – Time and Space complexity of

algorithms – Asymptotic analysis – Average and worst-case analysis – Asymptotic notation

– Importance of efficient algorithms – Program performance measurement – Recurrences:

The Substitution Method – The Recursion – Tree Method – Data structures and algorithms.

TIME AND SPACE COMPLEXITY OF ALGORITHM

Generally, there is always more than one way to solve a problem in computer

science with different algorithms. Therefore, it is highly required to use a method to

compare the solutions in order to judge which one is more optimal. The method must be:

● Independent of the machine and its configuration, on which the algorithm is

running on.

● Shows a direct correlation with the number of inputs.

● Can distinguish two algorithms clearly without ambiguity.

Time Complexity

The time complexity of an algorithm quantifies the amount of time taken by an

algorithm to run as a function of the length of the input. The time to run is a function of

the length of the input and not the actual execution time of the machine on which the

algorithm is running. In order to calculate time complexity on an algorithm, it is assumed

that a constant time c is taken to execute one operation, and then the total operations for

an input length on N are calculated. Consider an example to understand the process of

calculation: Suppose a problem is to find whether a pair (X, Y) exists in an array A of N

elements whose sum is z. The simplest idea is to consider every pair and check if it

satisfies the given condition or not.

The pseudo-code is as follows:

int a[n];

for(int i = 0;i < n;i++)

cin >> a[i];

for(int i = 0;i < n;i++)

for(int j = 0;j < n;j++)

if(i!=j && a[i]+a[j] == z)

return true

return false

Assume that each of the operations in the computer takes approximately constant

https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/
https://www.geeksforgeeks.org/given-an-array-a-and-a-number-x-check-for-pair-in-a-with-sum-as-x/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

time c. The number of lines of code executed actually depends on the value of z. During

analyses of the algorithm, mostly the worst-case scenario is considered, i.e., when there

is no pair of elements with sum equals z. In the worst case,

● N*c operations are required for input.

● The outer loop i, runs N times.

● For each i, the inner loop j loop runs n times.

So total execution time is N*c + N*N*c + c. Now ignore the lower order terms

since the lower order terms are relatively insignificant for large input, therefore only the

highest order term is taken (without constant) which is N*N in this case. Different

notations are used to describe the limiting behavior of a function, but since the worst

case is taken so big-O notation will be used to represent the time complexity.

Hence, the time complexity is O(N2) for the above algorithm. Note that the time

complexity is based on the number of elements in array A i.e the input length, so if the

length of the array will increase the time of execution will also increase.

Order of growth is how the time of execution depends on the length of the input.

In the above example, it is clearly evident that the time of execution quadratically

depends on the length of the array. Order of growth will help to compute the running

time with ease.

Another Example: Let’s calculate the time complexity of the below algorithm:

count = 0

for(int i =N; i > 0; i /= 2)

for (int j = 0; j < i; j++)

count++;

It seems like the complexity is O(N * log N). N for the j′s loop and log(N) for i′s loop.

But it’s wrong. Let’s see why.

Think about how many times count++ will run.

● When i = N, it will run N times.

● When i = N / 2, it will run N / 2 times.

● When i = N / 4, it will run N / 4 times.

● And so on.

The total number of times count++ will run is N + N/2 + N/4+…+1= 2 * N. So the

time complexity will be O(N). Some general time complexities are listed below with

the input range for which they are accepted in competitive programming:

https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

Input Length
Worst Accepted Time

Complexity
Usually type of solutions

10 -12 O(N!) Recursion and backtracking

15-18
O(2N * N)

Recursion, backtracking, and bit

manipulation

18-22 O(2N * N)
Recursion, backtracking, and bit

manipulation

30-40 O(2N/2 * N)
Meet in the middle, Divide and

Conquer

100 O(N4)
Dynamic programming,

Constructive

400 O(N3)
Dynamic programming,

Constructive

2K

O(N2* log N)

Dynamic programming, Binary

Search, Sorting, Divide and

Conquer

10K

O(N2)

Dynamic programming, Graph,

Trees,

1M O(N* log N)
Sorting, Binary Search, Divide

and Conquer

100M O(N), O(log N), O(1)
Constructive, Mathematical,

Greedy Algorithms

Space Complexity

The space complexity of an algorithm quantifies the amount of space taken by an

algorithm to run as a function of the length of the input. Consider an example: Suppose

a problem to find the frequency of array elements.

The pseudo-code is as follows:

int freq[n];

int a[n];

http://www.geeksforgeeks.org/recursion/
http://www.geeksforgeeks.org/backtracking-algorithms/
https://www.geeksforgeeks.org/bits-manipulation-important-tactics/
https://www.geeksforgeeks.org/bits-manipulation-important-tactics/
https://www.geeksforgeeks.org/meet-in-the-middle/
https://www.geeksforgeeks.org/meet-in-the-middle/
http://www.geeksforgeeks.org/divide-and-conquer-introduction/
http://www.geeksforgeeks.org/dynamic-programming/
http://www.geeksforgeeks.org/dynamic-programming/
https://www.geeksforgeeks.org/basic/constructive-algorithms/
https://www.geeksforgeeks.org/binary-search/
https://www.geeksforgeeks.org/binary-search/
https://www.geeksforgeeks.org/sorting-algorithms/
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
https://www.geeksforgeeks.org/binary-tree-data-structure/
https://www.geeksforgeeks.org/mathematical-algorithms/
https://www.geeksforgeeks.org/greedy-algorithms-general-structure-and-applications/
https://www.geeksforgeeks.org/counting-frequencies-of-array-elements/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

for(int i = 0; i<n; i++)

{

cin>>a[i];

freq[a[i]]++;

}

Here two arrays of length N, and variable i are used in the algorithm so, the total

space used is N * c + N * c + 1 * c = 2N * c + c, where c is a unit space taken. For many

inputs, constant c is insignificant, and it can be said that the space complexity is O(N).

There is also auxiliary space, which is different from space complexity. The main

difference is where space complexity quantifies the total space used by the algorithm,

auxiliary space quantifies the extra space that is used in the algorithm apart from the

given input. In the above example, the auxiliary space is the space used by the freq[]

array because that is not part of the given input. So total auxiliary space is N * c + c

which is O(N) only.

