Lattice:

A Lattice is a partially ordered set(Poset) (L, \leq) in which for every pair of elements $a, b \in L$, both greatest lower bound (GLB) and least upper bound (LUB) exists.

Note:

(i) GLB
$$\{a, b\} = a * b$$
 (or) $a \wedge b$ (or) $a \cdot b$

(ii) LUB
$$\{a, b\} = a \oplus b (or)a \lor b (or)a + b$$

Properties of lattice:

Some important laws and its proof:

- (i) Idempotent law:
- $a \lor a = a, a \land a = a$
- (ii) Commutative law:

$$a \lor b = b \lor a$$
 and $a \land b = b \land a$ PTIMIZE OUTSPRE

PALKULAM, KANYA

(iii) Associative law:

 $a \lor (b \lor c) = (a \lor b) \lor c$ and $a \land (b \land c) = (a \land b) \land c$

(iv) Absorption law:

 $a \lor (a \land b) = a \text{ and } a \land (a \lor b) = a$

MA8351 DISCRETE MATHEMATICS

(v) Distributive law:

 $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$

 $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$

Note:

i) $a \leq a \lor b$ and $b \leq a \lor b$

 $a \lor b$ is the upper bound of a and b.

If $a \le c$ and $b \le c$ then $a \lor b \le c$

Hence $a \lor b$ is the lub of a and b.

(ii) $a \land b \leq a$ and $a \land b \leq b$.

 $a \wedge b$ is the lower bound of a and b.

If $c \le a$ and $c \le b$ then $c \le a \land b^{4M}$, KANYAKUMA

Hence $a \wedge b$ is the glb of a and b.

ERVE OPTIMIZE OUTSPREND

INEERING

Note:

If $a \le b$ and $a \le c$ then $a \le b \lor c$

If $a \leq b$ and $a \leq c$ then $a \leq b \wedge c$

Problems:

MA8351 DISCRETE MATHEMATICS

1. State and prove Idempotent law:

Let (L, \land, \lor) be given lattice. Then, for any $a, b, c \in L$,

 $a \lor a = a, a \land a = a$.

Proof:

EERING Given $a \lor a = LUB(a, a) = LUB(a) = a$

Hence $a \lor a = a$

Now, $a \wedge a = \text{GLB}(a, a) = \text{GLB}(a) = a$

Hence $a \wedge a = a$

Hence the proof.

2. State and prove Commutative law:

Let (L, \land, \lor) be given lattice. Then, for any $a, b, c \in L$,

 $a \lor b = b \lor a$ and $a \land b = b \land a$ ERVE OPTIMIZE OUTSPREAD

Proof:

Given $a \lor b = LUB(a, b) = LUB(b, a) = b \lor a$

Hence $a \lor b = b \lor a$

Now, $a \wedge b = \text{GLB}(a, b) = \text{GLB}(b, a) = b \wedge a$

Hence $a \wedge b = b \wedge a$

Hence the proof.

3. State and prove Absorption law.

Prove that $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$

(**or**)

ULAM, KANYAKUMA

Proof:

We have $a \land b \leq a$ and $a \leq a$

 \Rightarrow a is the upper bound of $a \land b$ and a.

 $\Rightarrow a \lor (a \land b) \leq a \ldots (1)$

From the definition of lub we have

 $\Rightarrow a \leq a \lor (a \land b) \dots (2)$

From (1) and (2) we have $a \lor (a \land b) = a$ OBSERVE OPTIMIZE OUTSPREND

Similarly we can prove that $a \land (a \lor b) = a$

Hence the proof.

4. Every finite Lattice is bounded.

Proof:

Let (L, Λ, \vee) be a given lattice.

Since L is a Lattice both GLB and LUB exist.

Let "a" be GLB of L and "b" be LUB of L.

Then for any $x \in L$, we have $a \le x \le b$ $[= \dots (1)]$

From (1)

GLB $\{a, x\} = a \land x = a$

LUB
$$\{a, x\} = a \lor x = x$$

And

GLB
$$\{x, b\} = x \land b =$$

LUB
$$\{x, b\} = x \lor b = b$$

Therefore any finite lattice is bounded, KANYAKUN

X

Hence the proof.

OBSERVE OPTIMIZE OUTSPREAD

5. State and prove Isotonicity property.

Let (L, \leq) be a lattice. For any $a, b, c \in L$ then $b \leq c = \begin{cases} a \land b \leq a \land c \\ a \lor b \leq a \lor c \end{cases}$

Proof:

By consistency law we have, $a \le b \Leftrightarrow a \land b = a$ and $a \lor b = a$

Hence the proof.

ERING

WLAM, KANYAKUN

6. State and prove Distributive law.

 $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$

 $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$

Proof:

We know that $a \wedge b \leq a$ and $a \wedge b \leq b$

Also $b \le b \lor c$

Hence $a \land b \leq a$ and $a \land b \leq b \leq b \lor c$

Hence $a \wedge b$ is the lower bound of a and $b \vee c$

 $\Rightarrow a \land b \leq a \land (b \lor c) \ldots (1)$

Again $a \wedge c \leq a$ and $a \wedge c \leq c$

Also $c \le b \lor c$

Hence $a \wedge c \leq a$ and $a \wedge c \leq c \leq b \vee c$ BSERVE OPTIMIZE OUTSPREND

Hence $a \wedge c$ is the lower bound of a and $b \vee c$.

 $\Rightarrow a \land c \leq a \land (b \lor c) \dots (2)$

From (1) and (2) we have

 $a \land (b \lor c)$ is the upper bound of $a \land b$ and $a \land c$

ERING

Hence $(a \land b) \lor (a \land c) \le a \land (b \lor c)$

 $\Rightarrow a \land (b \lor c) \ge (a \land b) \lor (a \land c) \dots (I)$

We know that $a \leq a \lor b$ and $a \leq a \lor b$

Also $b \wedge c \leq b$

Hence $a \le a \lor b$ and $b \land c \le b \le a \lor b$

Hence $a \lor b$ is the lower bound of a and $b \land c$.

 $\Rightarrow a \lor (b \land c) \leq a \lor b \dots (3)$

Again $a \le a \lor a$ and $c \le a \lor c$

Also $b \wedge c \leq c$

Hence $a \le a \lor c$ and $b \land c \le c \le a \lor c$

Hence $a \lor c$ is the upper bound of a and $b \land c$.

 $\Rightarrow a \lor (b \land c) \leq a \lor \mathcal{G}_{BSERVE}^{(4)}$

From (3) and (4) we have

 $a \lor (b \land c)$ is the lower bound of $a \lor b$ and $a \lor c$

 $\Rightarrow a \lor (b \land c) \le (a \lor b) \land (a \lor c) \dots (II)$

Hence the proof.

7. State and prove Cancellation law.

Let (L, \leq) be a distributive lattice. Then $a \lor b = a \lor c$ and $a \land b = a \land c \Rightarrow$

 $b = c \forall a, b, c \in L$

Proof:

EERING By absorption law, we have $a \lor (a \land b) = a$

OBSERVE OPTIMIZE OUTSPREAD

Hence the proof.

= c

8. State and prove Consistency Law.

Let (L, \leq) be a lattice. Then $a \leq b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b \forall a, b, c \in L$

Proof:

ERING

HULAM, KANYAKUMA

First we prove that $a \leq b \Leftrightarrow a \wedge b = a$

We assume that $a \leq b$

To prove $a \wedge b = a$

We have $a \le b$ and $a \le a$

 \Rightarrow a is the lower bound of a and b.

 $\Rightarrow a \leq a \wedge b$

By the definition of greatest lower bound

...(1)

$$\Rightarrow a \land b \le a \qquad \dots (2)$$

From (1) and (2) we have, $a = a \wedge b$

Conversely assume that $a = a \wedge b$

To prove $a \le b$

This is possible only when $a \le b$ BSERVE OPTIMIZE OUTSPREAD

Hence $a \le b \Leftrightarrow a \land b = a$

Next we prove that $a \wedge b = a \Leftrightarrow a \vee b = b$

Assume that $a \wedge b = a$

To prove $a \lor b = b$

By absorption law $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$

Consider $b = b \lor (a \land b)$

 $= b \lor a$

Hence $a \lor b = b$

Conversely assume that $a \lor b = b$

To prove $a \wedge b = a$

By absorption law $a \land (a \lor b) = a$

Consider $a = a \land (a \lor b)$

 $= a \wedge b$

Hence $a \wedge b = a \Leftrightarrow a \vee b = b$

9. Show that a chain is a lattice. 4M, KANYAKUMP

Proof:

OBSERVE OPTIMIZE OUTSPREAD

IEERING

Let (L, \leq) be a lattice.

If $a, b \in L$ then $a \leq b$ or $b \leq a$

If $a \le b$ then $a \land b = a$ and $a \lor b = b$

Therefore GLB and LUB of a and b exists.

If $b \le a$ then $b \land a = b$ and $b \lor a = a$

Therefore GLB and LUB of a and b exists.

Hence every pair of elements has a GLB and LUB.

Hence chain is lattice.

OBSERVE OPTIMIZE OUTSPREAD