Lattice:

A Lattice is a partially ordered set(Poset) (L, \leq) in which for every pair of elements $a, b \in L$, both greatest lower bound (GLB) and least upper bound (LUB) exists.

Note:
(i) GLB $\{a, b\}=a * b$ (or) $a \wedge b$ (or) $a \cdot b$
(ii) LUB $\{a, b\}=a \oplus b$ (or) $a \vee b(o r) a+b$

Properties of lattice:

Some important laws and its proof:
(i) Idempotent law:
$a \vee a=a, a \wedge a=a$
(ii) Commutative law:
$a \vee b=b \vee a$ and $a \wedge b=b \wedge a$
(iii) Associative law:
$a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$
(iv) Absorption law:
$a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$

(v) Distributive law:

$a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$

$$
a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)
$$

Note:

i) $a \leq a \vee b$ and $b \leq a \vee b$
$a \vee b$ is the upper bound of a and b.

If $a \leq c$ and $b \leq c$ then $a \vee b \leq c$

Hence $a \vee b$ is the lub of a and b.
(ii) $a \wedge b \leq a$ and $a \wedge b \leq b$
$a \wedge b$ is the lower bound of a and b.

If $c \leq a$ and $c \leq b$ then $c \leq a \wedge b$

Hence $a \wedge b$ is the glb of a and b .

Note:

If $a \leq b$ and $a \leq c$ then $a \leq b \vee c$

If $a \leq b$ and $a \leq c$ then $a \leq b \wedge c$

Problems:

1. State and prove Idempotent law:

Let (L, \wedge, \vee) be given lattice. Then, for any $a, b, c \in L$,
$a \vee a=a, a \wedge a=a$.

Proof:

Given $a \vee a=\operatorname{LUB}(a, a)=\operatorname{LUB}(a)=a$

Hence $a \vee a=a$

Now, $a \wedge a=\operatorname{GLB}(a, a)=\operatorname{GLB}(a)=a$

Hence $a \wedge a=a$

Hence the proof.
2. State and prove Commutative law:

Let (L, \wedge, \vee) be given lattice. Then, for any $a, b, c \in L$,
$a \vee b=b \vee a$ and $a \wedge b=b \wedge a$

Proof:

Given $a \vee b=\operatorname{LUB}(a, b)=\operatorname{LUB}(b, a)=b \vee a$

Hence $a \vee b=b \vee a$

Now, $a \wedge b=\operatorname{GLB}(a, b)=\operatorname{GLB}(b, a)=b \wedge a$

Hence $a \wedge b=b \wedge a$

Hence the proof.

3. State and prove Absorption law.

(or)

Prove that $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$

Proof:

We have $a \wedge b \leq a$ and $a \leq a$
$\Rightarrow \mathrm{a}$ is the upper bound of $a \wedge b$ and a .
$\Rightarrow a \vee(a \wedge b) \leq a \ldots$

From the definition of lub we have

$$
\begin{equation*}
\Rightarrow a \leq a \vee(a \wedge b) \ldots(2 \tag{2}
\end{equation*}
$$

From (1) and (2) we have $a \vee(a \wedge b)=a$

Similarly we can prove that $a \wedge(a \vee b)=a$

Hence the proof.

4. Every finite Lattice is bounded.

Proof:

Let (L, \wedge, v) be a given lattice.

Since L is a Lattice both GLB and LUB exist.

Let " a " be GLB of L and " b " be LUB of L .

Then for any $x \in L$, we have $a \leq x \leq b \quad \therefore$ (1)

From (1)
$\operatorname{GLB}\{a, x\}=a \wedge x=a$
$\operatorname{LUB}\{a, x\}=a \vee x=x$

And
$\operatorname{GLB}\{x, b\}=x \wedge b=x$
$\operatorname{LUB}\{x, b\}=x \vee b=b$

Therefore any finite lattice is bounded.

Hence the proof.

Ob大马RME 0pTMME 0utsph

5. State and prove Isotonicity property.

Let (L, \leq) be a lattice. For any $a, b, c \in L$ then $b \leq c=\left\{\begin{array}{l}a \wedge b \leq a \wedge c \\ a \vee b \leq a \vee c\end{array}\right.$

Proof:

By consistency law we have, $a \leq b \Leftrightarrow a \wedge b=a$ and $a \vee b=a$

Let $b \leq c \Rightarrow b \wedge c=b$ and $b \vee c=c$

Consider $(a \wedge b) \wedge(a \wedge c)=a \wedge[(b \wedge a) \wedge c] \quad$ by Associative law

$$
=a \wedge[(a \wedge b) \wedge c] \quad \text { by Commutative law }
$$

$$
=(a \wedge a) \wedge(b \wedge c) \quad \text { by Associative law }
$$

$$
=a \wedge(b \wedge c) \quad \text { by Idempotent law }
$$

$$
=a \wedge b \quad \text { by }[b \wedge c=b]
$$

Hence $(a \wedge b) \wedge(a \wedge c)=a \wedge b$

$$
\begin{equation*}
\Rightarrow a \wedge b \leq a \wedge c \tag{1}
\end{equation*}
$$

Consider $(a \vee b) \wedge(a \vee c)=a \vee[(b \vee a) \vee c]$ by Associative law

$$
=a \vee[(a \vee b) \vee c] \quad \text { by Commutative law }
$$

$$
=(a \vee a) \vee(b \vee c) \quad \text { by Associative law }
$$

$$
=a \vee(b \vee c) \quad \text { by Idempotent law }
$$

$$
=a \vee b
$$

$$
\text { by }[b \vee c=b]
$$

Hence $(a \vee b) \wedge(a \vee c)=a \vee b$
$\Rightarrow a \vee b \leq a \vee c$

Hence the proof.

6. State and prove Distributive law.

$\boldsymbol{a} \wedge(\boldsymbol{b} \vee \boldsymbol{c}) \geq(\boldsymbol{a} \wedge \boldsymbol{b}) \vee(\boldsymbol{a} \wedge \boldsymbol{c})$

$$
\boldsymbol{a} \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)
$$

Proof:

We know that $a \wedge b \leq a$ and $a \wedge b \leq b$

Also $b \leq b \vee c$

Hence $a \wedge b \leq a$ and $a \wedge b \leq b \leq b \vee c$

Hence $a \wedge b$ is the lower bound of a and $b \vee c$.
$\Rightarrow a \wedge b \leq a \wedge(b \vee c)$

Again $a \wedge c \leq a$ and $a \wedge c \leq c$

Also $c \leq b \vee c$

Hence $a \wedge c \leq a$ and $a \wedge c \leq c \leq b \vee c$

Hence $a \wedge c$ is the lower bound of a and $b \vee c$.

$$
\begin{equation*}
\Rightarrow a \wedge c \leq a \wedge(b \vee c) \ldots \tag{2}
\end{equation*}
$$

From (1) and (2) we have
$a \wedge(b \vee c)$ is the upper bound of $a \wedge b$ and $a \wedge c$

Hence $(a \wedge b) \vee(a \wedge c) \leq a \wedge(b \vee c)$

$$
\begin{equation*}
\Rightarrow a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c) \ldots \tag{I}
\end{equation*}
$$

We know that $a \leq a \vee b$ and $a \leq a \vee b$

Also $b \wedge c \leq b$

Hence $a \leq a \vee b$ and $b \wedge c \leq b \leq a \vee b$

Hence $a \vee b$ is the lower bound of a and $b \wedge c$.
$\Rightarrow a \vee(b \wedge c) \leq a \vee b$

Again $a \leq a \vee a$ and $c \leq a \vee c$

Also $b \wedge c \leq c$

Hence $a \leq a \vee c$ and $b \wedge c \leq c \leq a \vee c$

Hence $a \vee c$ is the upper bound of a and $b \wedge c$.
$\Rightarrow a \vee(b \wedge c) \leq a \vee c \ldots(4)$

From (3) and (4) we have
$a \vee(b \wedge c)$ is the lower bound of $a \vee b$ and $a \vee c$
$\Rightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c) \ldots$

Hence the proof.

7. State and prove Cancellation law.

Let (L, \leq) be a distributive lattice. Then $a \vee b=a \vee c$ and $a \wedge b=a \wedge c \Rightarrow$ $b=c \forall a, b, c \in L$

Proof:

By absorption law, we have $a \vee(a \wedge b)=a$

Consider $b=b \vee(a \wedge b)$

$$
\begin{aligned}
& =b \vee(a \wedge c) \\
& =(a \vee b) \wedge(b \vee c) \\
& =(a \vee c) \wedge(b \vee c) \\
& =(a \wedge b) \vee c \\
& =(a \wedge c) \vee c
\end{aligned}
$$

First we prove that $a \leq b \Leftrightarrow a \wedge b=a$

We assume that $a \leq b$

To prove $a \wedge b=a$

We have $a \leq b$ and $a \leq a$
$\Rightarrow \mathrm{a}$ is the lower bound of a and b .
$\Rightarrow a \leq a \wedge b$

By the definition of greatest lower bound
$\Rightarrow a \wedge b \leq a$

From (1) and (2) we have, $a=a \wedge b$

Conversely assume that $a=a \wedge b$

To prove $a \leq b$

This is possible only when $a \leq \bar{b}$

Hence $a \leq b \Leftrightarrow a \wedge b=a$

Next we prove that $a \wedge b=a \Leftrightarrow a \vee b=b$

Assume that $a \wedge b=a$

To prove $a \vee b=b$

By absorption law $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$

Consider $b=b \vee(a \wedge b)$

$$
=b \vee a
$$

Hence $a \vee b=b$

Conversely assume that $a \vee b=b$

To prove $a \wedge b=a$

By absorption law $a \wedge(a \vee b)=a$

Consider $a=a \wedge(a \vee b)$

$$
=a \wedge b
$$

Hence $a \wedge b=a \Leftrightarrow a \vee b=b$

9. Show that a chain is a lattice.

Proof:

Let (L, S) be a lattice.

If $a, b \in L$ then $a \leq b$ or $b \leq a$

If $a \leq b$ then $a \wedge b=a$ and $a \vee b=b$

Therefore GLB and LUB of a and b exists.

If $b \leq a$ then $b \wedge a=b$ and $b \vee a=a$

Therefore GLB and LUB of a and b exists.

Hence every pair of elements has a GLB and LUB.

Hence chain is lattice.

