
BOUNDARY VALUE TESTING

 Boundary value analysis is a black-box testing technique that helps test whether an

application’s output falls within the acceptable range for all input values. It focuses on

testing edge or boundary conditions, including extreme and invalid values. It identifies

errors or imperfections in input parameter boundary conditions. BVA is a key testing

technique that helps identify and fix bugs early in the software development lifecycle

(SDLC). This article describes the basics of marginal analysis, its benefits, and how to

perform marginal analysis tests effectively.

Boundary testing is the process of testing between extreme ends or boundaries between partitions

of the input values.

 So these extreme ends like Start- End, Lower- Upper, Maximum-Minimum, Just Inside-

Just Outside values are called boundary values and the testing is called “boundary

testing”.

 The basic idea in normal boundary value testing is to select input variable values at their:

1. Minimum

2. Just above the minimum

3. A nominal value

4. Just below the maximum

5. Maximum

 In Boundary Testing, Equivalence Class Partitioning plays a good role

 Boundary Testing comes after the Equivalence Class Partitioning.

 Real-life example of boundary value analysis

 Example 1

 Consider a software application that requires users to enter the age. Applications may

contain specific minimum and maximum age restrictions. The restriction is to enter the

age between 18 to 30 years. If the user enters values above 30 or below 18, the

application may not work as expected. In this scenario, you can use BVA to test your

application by choosing values equal to, above, or below the age limit.

Invalid case Valid case Invalid case

11.12.13.,14,15,16,17 21,22,23,24,25,26,27,28,29 31,32,33,34,35,36,37,38,39

 Equivalence class testing (Equivalence class Partitioning) is a black-box testing technique

used in software testing as a major step in the Software development life cycle (SDLC). This

testing technique is better than many of the testing techniques like boundary value analysis,

worst case testing, robust case testing and many more in terms of time consumption and terms

of precision of the test cases. Since testing is done to identify possible risks, equivalence class

testing performs better than the other techniques as the test cases generated using it are

logically identified with partitions in between to create different input and output classes. This

can be shown from the next-date problem which is stated below:

Given a day in the format of day-month-year, you need to find the next date for the given date.

Perform boundary value analysis and equivalence-class testing for this.

Conditions :

D: 1<Day<31

M: 1<Month<12

Y: 1800 <Year <2048

No. of test Cases (n = no. of variables) = 4n+1 = 4*3 +1 =13

Test Cases:

Test Case ID Day Month Year Expected Output

1 1 6 2000 2-6-2000

2 2 6 2000 3-6-2000

3 15 6 2000 16-6-2000

4 30 6 2000 1-7-2000

5 31 6 2000 Invalid Date

6 15 1 2000 16-1-2000

7 15 2 2000 16-2-2000

8 15 11 2000 16-11-2000

9 15 12 2000 16-12-2000

10 15 6 1800 16-6-1800

11 15 6 1801 16-6-1801

12 15 6 2047 16-6-2047

13 15 6 2048 16-6-2048

Equivalence Class Testing:

Input classes:

Day:

D1: day between 1 to 28

D2: 29

D3: 30

D4: 31

Month:

M1: Month has 30 days

M2: Month has 31 days

M3: Month is February

Year:

Y1: Year is a leap year

Y2: Year is a normal year

Output Classes:

Increment Day

Reset Day and Increment Month

Increment Year

Invalid Date Strong Normal Equivalence Class Test Cases:

Test Cases:

Test Case ID Day Month Year Expected Output

E1 15 4 2004 16-4-2004

E2 15 4 2003 16-4-2003

E3 15 1 2004 16-1-2004

E4 15 1 2003 16-1-2003

E5 15 2 2004 16-2-2004

E6 15 2 2003 16-2-2003

E7 29 4 2004 30-4-2004

E8 29 4 2003 30-4-2003

E9 29 1 2004 30-1-2004

E10 29 1 2003 30-1-2003

E11 29 2 2004 1-3-2004

E12 29 2 2003 Invalid Date

E13 30 4 2004 1-5-2004

E14 30 4 2003 1-5-2003

E15 30 1 2004 31-1-2004

E16 30 1 2003 31-1-2003

E17 30 2 2004 Invalid Date

E18 30 2 2003 Invalid Date

E19 31 4 2004 Invalid Date

E20 31 4 2003 Invalid Date

E21 31 1 2004 1-2-2004

E22 31 1 2003 1-5-2003

E23 31 2 2004 Invalid Date

E24 31 2 2003 Invalid Date

So from this problem it is clearly seen that equivalence class testing clearly checks for many

cases that boundary value did not considered like that of February which has 28-29 days, leap

year which lead to variation in number of days in February and many more.

Hence the above example proves that equivalence partitioning generates more efficient test

cases that should be considered during risk assessment.

