
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Basic of JavaFX Events:

A GUI based applications are mostly driven by Events. Events are the actions that the
user performs and the responses the application generates.

Example: Button clicks by user, key press on the application etc.

An event is a notification about a change. It encapsulates the state changes in the
event source. Registered event filters and event handlers within the application
receive the event and provide a response.

 JavaFX provides support to handle events through the base class “Event” which is

available in the package javafx.event.

Examples of Events:

o Action Event — widely used to indicate things like when a button is pressed.

Class:- ActionEvent
Actions:- button pressed.

o Mouse Event — occurs when mouse is clicked

Class:- MouseEvent

Actions:- mouse clicked, mouse pressed, mouse released, mouse moved, mouse
entered target, mouse exited target.

o Drag Event — occurs when the mouse is dragged.

Class:- DragEvent

Actions:- drag entered, drag dropped, drag entered target, drag exited target,
drag over.

o Key Event — indicates that a keystroke has occurred.

Class:- KeyEvent

Actions:- Key pressed, key released and key typed.

o Window Event:
Class:- WindowEvent

Actions:- window hiding, window shown, window hidden, window showing.

o Scroll Event — indicates scrolling by mouse wheel, track pad, touch screen, etc...
o TouchEvent — indicates a touch screen action

JavaFX Events

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 : Event Handling:

Event handling is the mechanism that controls the event and decides what should
happen, if an event occurs. It has the code which is known as Event Handler that is
executed when an event occurs.

Event Handling in JavaFX is done by Event Filters and Event Handlers. They contain the
event handling logic to process a generated event.
Every event in JavaFX has three properties:

1. Event source
2. Event target
3. Event type

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

S.N Property Description

1 Event Source
It denotes source of the event i.e. the origin which is responsible

for generating the event.

2

Event Target

It denotes the node on which the event is created. It remains
unaffected for the generated event. Event Target is the instance
of any of the class that implements the java interface
“EventTarget”.

3

Event Type

It is the type of the event that is being generated. It is basically
the instance of EventType class.
Example: KeyEvent class contains KEY_PRESSED,

KEY_RELEASED, and KEY_TYPED types.

Phases of Event Handling in JavaFX:

Whenever an event is generated, JavaFX undergoes the following phases:

1. Target Selection – Depends on the particular event type.
2. Route Construction – Specified by the event target.
3. Event Capturing – Event travels from the stage to the event target.
4. Event Bubbling – Event travel back from the target to the stage.

1. Target Selection:

The first step to process an event is the selection of the event target. Event target
is the node on which the event is created. Event target is selected based in the
Event Type.

 For key events, the target is the node that has key focus.
 The node where the mouse cursor is located is the target for mouse events.

2. Route Construction:

Usually, an event travels through the event dispatchers in order in the event
dispatch chain. An Event Dispatch Chain is created to determine the default route
of the event whenever an event is generated. It contains the path from the stage
to the node on which the event is generated.

3. Event Capturing:

In this phase, an event is dispatched by the root node and passed down in the
Event Dispatch Chain to the target node.
Event Handlers will not be invoked in this phase.

If any node in the chain has registered the event filter for the type of event that
occurred, then the filter on that node is called. When the filter completes, the

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

event is moved down to the next node in the Dispatch Chain. If no event filters
consumes the event, then the event target receives and processes the generated
event.

4. Event Bubbling:

In this phase, a event returns from the target node to the root node along the
event dispatch chain.
Events handlers will be invoked in this phase.

If any node in the chain has a handler for the generated event, that handler is
executed. When the handler completes, the event is bubbled up in the chain. If the
handler is not registered for a node, the event is returned to the bubbled up to
next node in the route. If no handler in the path consumed the event, the root
node consumes the event and completes the processing.

Three methods for Event Handling:

1. Convenience Methods:
 setOnKeyPressed(eventHandler);
 setOnMouseClicked(eventHandler);

2. Event Handler/Filter Registration Methods:

 addEventHandler(eventType, eventHandler);
 addEventFilter(eventType, eventFilter);

3. Event Dispatcher Property (lambda expression).

Event Filters:

 Event Filters provides the way to handle the events generated by the Keyboard
Actions, Mouse Actions, Scroll Actions and many more event sources.

 They process the events during Event Capturing Phase.
 A node must register the required event filters to handle the generated event on that

node. handle() method contains the logic to execute when the event is triggered.

 Adding Event-Filter to a node:

To register the event filter for a node, addEventFilter() method is used.

Syntax:

node.addEventFilter (<Event_Type>, new EventHandler<Event-Type>()
{
public void handle(Event-Type)
{
//Actual logic
});

Where,
First argument is the type of event that is generated.
Second argument is the filter to handle the event.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 Removing Event-Filter:

We can remove an event filter on a node using removeEventFilter() method.

Syntax:

node.removeEventFilter(<Input-Event>, filter);

Event Handlers:

 Event Filters provides the way to handle the events generated by the Keyboard
Actions, Mouse Actions, Scroll Actions and many more event sources.

 They are used to handle the events during Event Bubbling Phase.
 A node must register the event handlers to handle the generated event on that node.

handle() method contains the logic to execute when the event is triggered.

 Adding Event-Handler to a node:

To register the event handler for a node, addEventHandler() method is used.

Syntax:

node.addEventHandler (<Event_Type>, new EventHandler<Event-Type>()
{
public void handle(<Event-Type> e)
{
//Handling Code
});

Where,
First argument is the type of event that is generated.
Second argument is the filter to handle the event.

 Removing Event-Filter:

We can remove an event handler on a node using removeEventHandler() method.

Syntax:

node.removeEventHandler(<EventType>, handler);
A node can register for more than one Event Filters and Handlers.
The interface javafx.event.EventHanler must be implemented by all the event filters and
event handlers.

 HANDLING KEY EVENTS

Key Event − It is an input event that indicates the key stroke occurred on a node.

 It is represented by the class named KeyEvent.

5.3: Handling Key Events and Mouse Events

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 This event includes actions like key pressed, key released and key typed.

Types of Key Event in Java

1. KEY_PRESSED – When a key on the keyboard is pressed, this event will be
triggered.

2. KEY_RELEASED – When the pressed key on the keyboard is released, this event
will be executed.

3. KEY_TYPED – This event will be triggered when a Unicode character is entered

Methods in the KeyEvent class to get the key details

 KeyCode getCode() – This method returns the key information or the KeyCode
enum constant linked with the pressed or released key.

 String getText() – This method returns a String description of the KeyCode linked
with the KEY_PRESSED and KEY_RELEASED events.

 String getCharacter() – This method returns a string representing a character or a
sequence of characters connected with the KEY_TYPED event.

Example:

/* Program to handle KeyTyped and KeyPressed Events.
Whenever a key is pressed in TextFiled1, it will be displayed in TextFiled2.
Whenever BackSpace key is pressed in TextFiled1, last character in TextFiled2 will
be erased.
If you attempt to type a character in TextField2, alert box will be displaying */

import javafx.application.Application;
import static javafx.application.Application.launch;
import javafx.event.*;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.stage.Stage;
import javafx.scene.input.*;
import javafx.scene.control.Alert.*;
public class NewFXMain extends Application {

@Override
public void start(Stage primaryStage)

{
TextField tf1=new TextField();
TextField tf2=new TextField();
Label l1=new Label("Text Pressed : ");
EventHandler<KeyEvent> handler1=new EventHandler<KeyEvent>() {

String str="",str1="";
int d;

public void handle(KeyEvent event)
{

if(event.getCode()== KeyCode.BACK_SPACE)
{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

str=str.substring(0,str.length()-1);
tf2.setText(str);
}

else
{
str+=event.getText();
tf2.setText(str);
}

}
};

EventHandler<KeyEvent> handler2=new EventHandler<KeyEvent>(){
public void handle(KeyEvent event)
{

Alert a=new Alert(AlertType.WARNING);
a.setContentText("Sorry! Dont Type Anything Here!!");
a.show();

}
};

tf1.setOnKeyPressed(handler1);
tf2.setOnKeyTyped(handler2);
GridPane root = new GridPane();
root.addRow(1,tf1);
root.addRow(2,l1);
root.addRow(3,tf2);
Scene scene = new Scene(root, 300, 250);
primaryStage.setTitle("KeyEvent-Demo");
primaryStage.setScene(scene);
primaryStage.show();

}

public static void main(String[] args) {
launch(args);

}
}

Figure 1: When a key is pressed in TextField 1

Figure 2: When backspace key is pressed in TextField 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

 HANDLING MOUSE EVENTS

JavaFX Mouse Events are used to handle mouse events. The MouseEvents works when
you Clicked, Dragged, or Pressed and etc. An object of the MouseEvent class represents
a mouse events.

Types of Mouse Events in JavaFX

 ANY – This mouse event type is known as the supertype of all mouse event types. If
you want your node to receive all types of events. This event type would be used for
your handlers.

 MOUSE_PRESSED – When you press a mouse button, this event is triggered. The
MouseButton enum defines three constants that represent a mouse button: NONE,
PRIMARY, and SECONDARY. The MouseEvent class’s getButton() method returns the
mouse button that is responsible for the event.

 MOUSE_RELEASED – The event is triggered if you pressed and released a mouse
button in the same node.

 MOUSE_CLICKED – This event will occur when you pressed and released a node.
 MOUSE_MOVED – Simply move your mouse without pressing any mouse buttons to

generate this type of mouse event.
 MOUSE_ENTERED – This event occurs when the mouse or cursor enters the target

node.
 MOUSE_EXITED – This event occurs when the mouse or cursor leaves or moved

outside the target node.
 MOUSE_DRAGGED – This event occurs when you move the mouse with a pressed

mouse button to a target node.

Example:

import javafx.application.Application;
import javafx.event.Event.*;
import javafx.scene.*;
import javafx.event.EventHandler;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.*;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

import javafx.stage.Stage;
import javafx.scene.control.*;
import java.util.*;
public class MouseEvents extends Application {

@Override
public void start(Stage primaryStage) {

Button btn = new Button();
Label status=new Label();
btn.setText("Mouse Event");
status.setText("Hello");
btn.setOnMousePressed(new EventHandler<MouseEvent>() {

public void handle(MouseEvent me) {
status.setText("Mouse pressed");

}
});
btn.setOnMouseEntered(e-> {

status.setText("Mouse Entered");
});
btn.setOnMouseExited(e-> {

status.setText("Mouse Exited");
});
btn.setOnMouseReleased(e-> {

status.setText("Mouse Released");
});
BorderPane bp = new BorderPane();
bp.setCenter(btn);
bp.setBottom(status);
Scene scene = new Scene(bp, 300, 250);
scene.setOnMouseDragged(e-> {

status.setText("Mouse Dragged");
});
primaryStage.setTitle("MouseEvent-Demo");
primaryStage.setScene(scene);
primaryStage.show();

}
public static void main(String[] args) {

launch(args);
}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

OUTPUT

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Every user interface considers the following three main aspects −

1. UI elements − These are the core visual elements which the user eventually sees
and interacts with.

2. Layouts − They define how UI elements should be organized on the screen.
3. Behavior − These are events which occur when the user interacts with UI

elements.

 JavaFX provides several classes in the package javafx.scene.control.

5.4: JavaFX UI Controls

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3391 OBJECT ORIENTED PROGRAMMING

Figure: JavaFX UI Controls

CS3391 OBJECT ORIENTED PROGRAMMING

 S. No. UI Control Description Constructors

1.

Label

Component that is used to define a
simple text on the screen. It is an not
editable text control.

new Label()
new Label(String S, Node n)
new Label(String s)

2.

TextField
Used to get the input from the user in
the form of text. Allows to enter a
limited quantity of text.

New TextField()

3.

CheckBox

Used to get the kind of information
from the user which contains various
choices. User marked the checkbox
either on (true) or off(false).

new CheckBox()
new CheckBox(String s)

4.

RadioButton

Used to provide various options to the
user. The user can only choose one
option among all. A radio button is
either selected or deselected.

new RadioButton()
new RadioButton(String s)

5. Button
Component that controls the function
of the application.

new Button()
new Button(String s)

6.

ComboBox
Shows a list of items out of which user
can select at most one item

new ComboBox
new
ComboBox(ObservableList i)

7.

ChoiceBox

Shows a set of items and allows the
user to select a single choice and it will
show the currently selected item on
the top. ChoiceBox by default has no
selected item unless otherwise
selected.

new ChoiceBox
new
ChoiceBox(ObservableList i)

8.

ListView
Enables users to choose one or more
options from a predefined list of
choices.

new ListView();

9.

ScrollPane

It provides a scrollable view of UI
Elements. It is a container that has two
scrollbars around the component it
contains if the component is larger
than the visible area of the ScrollPane.
The scrollbars enable the user to scroll
around the component shown inside
the ScrollPane

new ScrollPane();

10.

ToggleButton

Special control having the ability to be
selected. Basically, ToggleButton is
rendered similarly to a Button but
these two are the different types of
Controls. A Button is a “command”
button that invokes a function when
clicked. But a ToggleButton is a control
with a Boolean indicating whether it is
selected.

new ToggleButton
newToggleButton(String txt)
new ToggleButton(String txt,
Node graphic)

CS3391 OBJECT ORIENTED PROGRAMMING

Example : JavaFX program for Simple Registration form using UI Controls:

import javafx.application.Application;
import javafx.collections.*;

import javafx.geometry.Insets;
import javafx.geometry.Pos;

import javafx.scene.image.*;

import javafx.scene.Scene;
import javafx.scene.control.*;

import javafx.scene.layout.*;
import javafx.scene.text.Text;

import javafx.stage.Stage;

public class JavaFXControlDemo extends Application {

@Override
public void start(Stage stage)

{

CS3391 OBJECT ORIENTED PROGRAMMING

//Label for name
Text nameLabel = new Text("Name");

//Text field for name
TextField nameText = new TextField();

//Label for date of birth
Text dobLabel = new Text("Date of birth");

//date picker to choose date
DatePicker datePicker = new DatePicker();

//Label for gender
Text genderLabel = new Text("gender");

//Toggle group of radio buttons
ToggleGroup groupGender = new ToggleGroup();
RadioButton maleRadio = new RadioButton("male");
maleRadio.setToggleGroup(groupGender);
RadioButton femaleRadio = new RadioButton("female");
femaleRadio.setToggleGroup(groupGender);

//Label for reservation
Text reservationLabel = new Text("Reservation");

//Toggle button for reservation
ToggleButton yes = new ToggleButton("Yes");
ToggleButton no = new ToggleButton("No");
ToggleGroup groupReservation = new ToggleGroup();
yes.setToggleGroup(groupReservation);
no.setToggleGroup(groupReservation);

//Label for technologies known
Text technologiesLabel = new Text("Technologies Known");

//check box for education
CheckBox javaCheckBox = new CheckBox("Java");
javaCheckBox.setIndeterminate(false);

//check box for education
CheckBox dotnetCheckBox = new CheckBox("DotNet");
javaCheckBox.setIndeterminate(false);

//Label for education
Text educationLabel = new Text("Educational qualification");

CS3391 OBJECT ORIENTED PROGRAMMING

//list View for educational qualification
ObservableList<String> names = FXCollections.observableArrayList(

"B.E","M.E","BBA","MCA", "MBA", "Vocational", "M.TECH", "Mphil",
"Phd");

ListView<String> educationListView = new ListView<String>(names);
educationListView.setMaxSize(100, 100);

educationListView.getSelectionModel().setSelectionMode(SelectionMode.MU
LTIPLE);

Label interest=new Label("Area of Interest");
ComboBox AoI=new ComboBox();
AoI.getItems().addAll("Android App. Dev.", "IoS App. Dev.", "FUll Stack

Dev.", "Azure FrmWork", "AWS", "Web Dev.", "Ui/Ux Design");
AoI.setVisibleRowCount(3);

//Label for location
Text locationLabel = new Text("location");

//Choice box for location
ChoiceBox locationchoiceBox = new ChoiceBox();
locationchoiceBox.getItems().addAll

("Hyderabad", "Chennai", "Delhi", "Mumbai", "Vishakhapatnam");

//Label for register
Button buttonRegister = new Button("Register");

//Creating a Grid Pane
GridPane gridPane = new GridPane();

//Setting size for the pane
gridPane.setMinSize(500, 500);

//Setting the padding
gridPane.setPadding(new Insets(10, 10, 10, 10));

//Setting the vertical and horizontal gaps between the columns
gridPane.setVgap(5);
gridPane.setHgap(5);

//Setting the Grid alignment
gridPane.setAlignment(Pos.CENTER);

//Arranging all the nodes in the grid
gridPane.add(nameLabel, 0, 0);
gridPane.add(nameText, 1, 0);

gridPane.add(dobLabel, 0, 1);

CS3391 OBJECT ORIENTED PROGRAMMING

gridPane.add(datePicker, 1, 1);

gridPane.add(genderLabel, 0, 2);
gridPane.add(maleRadio, 1, 2);
gridPane.add(femaleRadio, 2, 2);
gridPane.add(reservationLabel, 0, 3);
gridPane.add(yes, 1, 3);
gridPane.add(no, 2, 3);

gridPane.add(technologiesLabel, 0, 4);
gridPane.add(javaCheckBox, 1, 4);
gridPane.add(dotnetCheckBox, 2, 4);

gridPane.add(educationLabel, 0, 5);
gridPane.add(educationListView, 1, 5);

gridPane.add(interest,0,6);
gridPane.add(AoI,1,6);

gridPane.add(locationLabel, 0, 7);
gridPane.add(locationchoiceBox, 1, 7);

gridPane.add(buttonRegister, 2, 8);

Scene scene = new Scene(gridPane);

//Setting title to the Stage
stage.setTitle("Registration Form");

//Adding scene to the stage
stage.setScene(scene);

//Displaying the contents of the stage
stage.show();

}

public static void main(String args[])
{

launch(args);
}

}

CS3391 OBJECT ORIENTED PROGRAMMING

OUTPUT:

	Basic of JavaFX Events:
	An event is a notification about a change. It encapsulates the state changes in the event source. Registered event filters and event handlers within the application receive the event and provide a response.
	Examples of Events:
	: Event Handling:
	Phases of Event Handling in JavaFX:
	1. Target Selection:
	2. Route Construction:
	3. Event Capturing:
	Event Handlers will not be invoked in this phase.
	4. Event Bubbling:
	Events handlers will be invoked in this phase.
	Three methods for Event Handling:
	2. Event Handler/Filter Registration Methods:
	3. Event Dispatcher Property (lambda expression).
	 Adding Event-Filter to a node:
	Syntax:
	 Removing Event-Filter:
	Syntax: (1)
	 Adding Event-Handler to a node:
	Syntax: (2)
	 Removing Event-Filter: (1)
	Syntax: (3)
	Types of Key Event in Java
	Methods in the KeyEvent class to get the key details
	Example:
	Types of Mouse Events in JavaFX
	Example: (1)
	OUTPUT
	Figure: JavaFX UI Controls
	Example : JavaFX program for Simple Registration form using UI Controls:
	OUTPUT:

