STEADY UNIFORM FLOW: CHEZY EQUATION, MANNING EQUATION

When uniform flow occurs gravitational forces exactly balance the frictional resistance forces which apply as a shear force along the boundary (channel bed and walls).

Considering the above diagram, the gravity force resolved in the direction of flow is

$$
\text { Gravity force }=\rho \mathrm{gAL} \sin \theta
$$

boundary shear force resolved in the direction of flow is

$$
\text { shear force }=\tau_{0} \mathrm{PL}
$$

In uniform flow these balance

Considering a channel of small slope, (as channel slopes for unifor and gradually varied flow seldom exceed about 1 in 50) then

1.The Chezy equation

If an estimate of τ_{0} can be made then we can make use of Equation.
If we assume the state of rough turbulent flow then we can also make the assumption the shear force is proportional to the flow velocity squared i.e.

$$
V=\sqrt{\frac{\rho g}{K} R S_{0}}
$$

Or grouping the constants together as one equal to C

$$
V=C \sqrt{R S_{0}}
$$

This is the Chezy equation and the C the 'Chezy C '

The Manning equation

A very many studies have been made of the evaluation of C for different naturaland manmade channels.

$$
C=\frac{R^{1 / 6}}{n}
$$

Problem 1

Find the velocity of flow and rate of flow of water through a rectangular channel of 6 m wide and 3 m deep, when it is running full. The channel is having bed slope as 1 in 2000. Take chezy's constant $\mathrm{C}=55$.

Given:
Width of rectangle channel, $b=6 \mathrm{~m}$.

Solution:

$$
\begin{aligned}
& \text { Area }=\mathrm{b} \times \mathrm{d}=6 \times 3=18 \mathrm{~m}^{2} \\
& \text { Perimeter } \mathrm{P}=\mathrm{b}+2 \mathrm{~d}=6+2 \times 3=12 \mathrm{~m} \\
& \text { Hydraulic mean depth, } \mathrm{m}=\mathrm{A} / \mathrm{P}=18 / 12=1.5 \mathrm{~m} \\
& \mathrm{~V}=\mathrm{C} \sqrt{m i}=55 \times \sqrt{1.5 \times 1 / 2000}=1.506 \mathrm{~m} / \mathrm{s} \\
& \mathrm{Q}=\mathrm{V} \times \text { Area }=1.506 \times 18=\mathbf{2 7 . 1 0 8} \mathrm{m}^{3} / \mathrm{s} .
\end{aligned}
$$

Problem 2

Find the slope of the bed of a rectangular channel 5 m when depth of water is 2 m and rate of flow is given as $20 \mathrm{~m}^{3} / \mathrm{s}$. Take chezy's constant, $\mathrm{C}=50$.

Given:

Width of channel $\mathrm{b}=5 \mathrm{~m}$.

Depth of water $\mathrm{d}=2 \mathrm{~m}$
Rate of flow $\mathrm{Q}=20 \mathrm{~m} 3 / \mathrm{s}$.
$\mathrm{C}=50$
Bed Slope $=\mathrm{i}$

Solution:

Problem 3

Find the discharge through a trapezoidal channel of width 8 m and side slope of 1 horizontal to 3 vertical. The depth of flow of water is 2.4 m and value of Chezy's constant, $\mathrm{C}=50$. The slope of the bed of the channel is given 1 in 4000 .

Given:

Width $\mathrm{b}=8 \mathrm{~m}$

Side Slope $=1$ horizontal to 3 vertical

Depth $\mathrm{d}=2.4 \mathrm{~m}$

Chezy' s constant C = 50, Bed Slope $\mathrm{I}=1 / 4000$

Solution

Horizontal distance $B E=2.4 \times 1 / 3=0.8 \mathrm{~m}$

Therefore Top Width of the channel,

$$
\mathrm{CD}=\mathrm{AB}+2 \times \mathrm{BE}=8.0+2 \times 0.8=9.6 \mathrm{~m}
$$

Therefore Area of trapezoidal channel, ABCD is given as,

$$
\mathrm{A}=(\mathrm{AB}+\mathrm{CD}) \times \mathrm{CE} / 2=(8+9.6) \times 2.4 / 2=17.6 \times 1.2=21.12 \mathrm{~m}^{2}
$$

Wetted Perimeter, $\mathrm{P}=\mathrm{AB}+\mathrm{BC}+\mathrm{AD}=\mathrm{AB}=2 \mathrm{BC}$

$$
\mathrm{BC}=\sqrt{B E^{2}+C E^{2}}
$$

$$
=\sqrt{(0.8)^{2}+(2.4)^{2}}=2.529 \mathrm{~m}
$$

$$
\mathrm{P}=8+2 \times 2.529=13.058 \mathrm{~m}
$$

Hydraulic mean depth $\mathrm{m}=\mathrm{A} / \mathrm{P}$

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{AC} \sqrt{m i} \\
& =21.12 \times 50 \sqrt{1.617 \times 1 / 4000} \\
& =\mathbf{2 1 . 2 3} \mathbf{~ m}^{3} / \mathrm{s}
\end{aligned}
$$

Problem 4

Find the bed slope of trapezoidal channel of bed width 6 m , depth of water 3 m and side slope of 3 horizontal to 4 vertical, when the discharge through the channel is $30 \mathrm{~m}^{3} / \mathrm{s}$. Take Chezy's Constant, $\mathrm{C}=70$

Given:

Solution

$\mathrm{A}=$ Area of trapezoidal ABCD

$$
\begin{aligned}
& =(\mathrm{AB}+\mathrm{CD}) \times \mathrm{CE} / 2 \\
& =(6+10.50) / 2 \times 3=24.75 \mathrm{~m}^{2}
\end{aligned}
$$

Hydraulic mean depth, $\mathrm{m}=\mathrm{A} / \mathrm{P}=24.75 / 13.50=1.833$

$$
\begin{gathered}
\mathrm{Q}=\mathrm{AC} \sqrt{m i} \\
30.0=24.75 \times 70 \sqrt{1.833 \times i}=2345.6 \sqrt{i} \\
\mathrm{i}=(30 / 2345.6)^{2}=1 /(2345.6 / 30)^{2}=1 / 6133
\end{gathered}
$$

problem 5

Find the discharge of water through the channel shown in the fig. Take thevalue of Chezy's constant $=60$ and slope of the bed as 1 in 2000

Given:

Chezy s Constant $\mathrm{C}=60$
Bed Slope, $i=1 / 2000$

Solution:

$$
\begin{aligned}
& \mathrm{A}=\text { Area } \mathrm{ABCD}+\text { Area BEC } \\
& =(1.2 \times 3.0)+\pi \mathrm{R}^{2} / 2 \mathrm{~S} \\
& =3.6+(1.5)^{2} \pi / 2=7.134 \mathrm{~m}^{2} \\
& \text { Wetted Perimeter, } \mathrm{P}=\mathrm{AB}+\mathrm{BEC}+\mathrm{CD} \\
& \\
& =1.2+\pi \mathrm{R}+1.2=1.2+\pi 1.5+1.2 \\
& \\
& =7.1124 \mathrm{~m}
\end{aligned}
$$

Hydraulic mean depth, $\mathrm{m}=\mathrm{A} / \mathrm{P}$

$$
=7.134 / 7.1124=1.003
$$

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{AC} \sqrt{m i} \\
& =7.134 \times 60 \times \sqrt{\left(1.003 \times \frac{1}{2000}\right)} \\
& =9.585 \mathbf{~ m}^{3} / \mathrm{s}
\end{aligned}
$$

problem 6
 6

Find the rate of flow of water through a V - Shaped channel as shown in the fig. Take the value of $\mathrm{C}=55$ and slope of the bed 1 in 2000

Given:

$C=55$

Bed Slope $\mathrm{i}=1 / 1000$

Depth of flow, $\mathrm{d}=4.0 \mathrm{~m}$

Angle made by each side with vertical i.e $\angle \mathrm{ABD}=\angle \mathrm{CBD}=30^{\circ}$

Solution:

$$
\text { Area } A=\text { Area of } A B C
$$

$$
=2 \times \text { Area of } \mathrm{ABCD}=(2 \times \mathrm{AD} \times \mathrm{BD}) / 2=\mathrm{AD} \times \mathrm{BD}
$$

$$
\begin{aligned}
& =2 \sqrt{B D^{2}+A D^{2}} \\
& =2 \sqrt{4^{2}+(4 \tan 30)^{2}}
\end{aligned}
$$

$$
=2 \sqrt{(16.0+5.333)}=9.2375 \mathrm{~m}
$$

Hydraulic mean depth, $\mathrm{m}=\mathrm{A} / \mathrm{P}$

$$
\begin{aligned}
& =9.2376 / 9.2375=1.0 \mathrm{~m} \\
\mathrm{Q} & =\mathrm{AC} \sqrt{m i} \\
& =9.2376 \times 55 \sqrt{(1 * 1 / 1000)}
\end{aligned}
$$

$$
=16.066 \mathrm{~m}^{3} / \mathrm{s}
$$

HYDRAULICALLY EFFICIENT CHANNEL SECTIONS

Most Economical Section of Channels:

A section of a channel is said to be most economical when the cost of construction of the channel is minimum. But the cost of construction of a channel depends on excavation and the lining. To keep the cost down or minimum, the wetted perimeter, for a given discharge, should be minimum. This condition is utilized for determining the dimensions of economical sections of different forms of channels.

Most economical section is also called the best section or most efficient section as the discharge, passing through a most economical section of channel for a given cross- sectional area A , slope of the bed S and a resistance coefficient, is maximum.

Obgeive opichrif outspredo

Most Economical Rectangular Channel:

Consider a rectangular section of channel as shown

Let $\mathrm{B}=$ width of channel,
d
$D=$ depth of flow.
\therefore area of flow $\mathrm{A}=\mathrm{b} \times d$
wetted perimeter, $\mathrm{P}=\mathrm{b}+2 \mathrm{~d}$

$$
=\mathrm{Ad}+2 \mathrm{~d}=\mathrm{Ad}+2 \mathrm{~d}---(3)
$$

for most economical section, P should be minimum for a

$$
\begin{aligned}
& \text { given area. } \\
& \frac{\partial p}{\partial d}=0
\end{aligned}
$$

difference the equation (3) with respect to 'd' and equating the same to zero, we get,

Now hydraulic mean depth,m=A/P

problem 1

A rectangular channel of width, 4 m is having a bed slope of 1 in 1500 . Find the maximum discharge through the channel. Take value of $\mathrm{C}=50$

Given:

$$
\begin{aligned}
& \mathrm{b}=4 \mathrm{~m} \\
& \mathrm{i}=\frac{1}{1500} \\
& \mathrm{C}=50
\end{aligned}
$$

Solution

$$
\mathrm{b}=2 \mathrm{~d}
$$

Area of economical rectangular channel,

$$
\mathrm{A}=\mathrm{b} \times \mathrm{d}=4 \times 2=8 \mathrm{~m}^{2}
$$

$$
\mathrm{Q}=\mathrm{AC} \sqrt{\mathrm{mi}}
$$

$$
\mathrm{Q}=4 \times 2 \times 50 \times \sqrt{1 \times \frac{1}{1500}}
$$

(9) $\mathrm{Q}=10.328 \mathrm{m3} / \mathrm{s}$.

problem 2

A rectangular channel carries water at the rate of 400 lt is when bed slope is 1 in 2000. Find the most economical dimension of the channel of $\mathrm{C}=50$

Given:

$$
\mathrm{Q}=400 \mathrm{lts} / \mathrm{s}=0.4 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
\begin{aligned}
& \mathrm{i}=\frac{1}{2000} \\
& \mathrm{C}=50
\end{aligned}
$$

Solution

For the rectangular channel to be most economical,
i. Width $\mathrm{b}=2 \mathrm{~d}$.
ii. Hydraulic mean depth $\mathrm{m}=\frac{d}{2}$
$=2 \times 50 \sqrt{5 / 4000} \times d^{5 / 2}$
$d^{5 / 2}=0.253$
$\mathrm{d}=0.577 \mathrm{~m}$
$\mathrm{b}=2 \times d=2 \times 0.577=1.154 m$

