
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

Vector time

Definition

 The system of vector clocks was developed independently by Fidge, Mattern, and

Schmuck. In the system of vector clocks, the time domain is represented by a set of n-dimensional

non-negative integer vectors.

Each process pi maintains a vector vti[1…n], where vti[i] is the local logical clock of pi and

describes the logical time progress at process pi. vti [j] represents process pi’s latest knowledge of

process pi local time. If vti [j] = x, then process pi knows that local time at process pi has progressed

till x. The entire vector vti constitutes pi’s view of the global logical time and is used to timestamp

events.

Process pi uses the following two rules R1 and R2 to update its clock:

1. R1 Before executing an event, process pi updates its local logical time as follows:

2. R2 Each message m is piggybacked with the vector clock vt of the sender process at sending

time. On the receipt of such a message (m,vt), process pi executes the following sequence

of actions:

1. update its global logical time as follows:

2. execute R1;

3. deliver the message m.

The timestamp associated with an event is the value of the vector clock of its process when

the event is executed. Figure shows an example of vector clocks progress with the increment value

d = 1. Initially, a vector clock is [0,0,0,….].

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

Figure: Evolution of vector time

The following relations are defined to compare two vector timestamps, vh and vk:

Basic Properties

Isomorphism

 If events in a distributed system are timestamped using a system of vector clocks, we have

the following property. If two events x and y have timestamps vh and vk, respectively, then

Thus, there is an isomorphism between the set of partially ordered events produced by a

distributed computation and their vector timestamps. This is a very powerful, useful, and

interesting property of vector clocks.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

Strong consistency

 The system of vector clocks is strongly consistent; thus, by examining the vector timestamp

of two events, we can determine if the events are causally related.

Event counting

 If d is always 1 in rule R1, then the ith component of vector clock at process pi, vti[i],

denotes the number of events that have occurred at pi until that instant. So, if an event e has

timestamp vh, vh[j] denotes the number of events executed by process pj that causally precede e.

Applications

 Since vector time tracks causal dependencies exactly, it finds a wide variety of applications.

For example, they are used in distributed debugging, implementations of causal ordering

communication and causal distributed shared memory, establishment of global breakpoints, and in

determining the consistency of checkpoints in optimistic recovery.

Size of vector clocks

• A vector clock provides the latest known local time at each other process. If this

information in the clock is to be used to explicitly track the progress at every other process,

then a vector clock of size n is necessary.

• A popular use of vector clocks is to determine the causality between a pair of events. Given

any events e and f, the test for e ≺ f if and only if T(e) < T(f), which requires a comparison

of the vector clocks of e and f. Although it appears that the clock of size n is necessary, that

is not quite accurate. It can be shown that a size equal to the dimension of the partial order

(E,≺) is necessary, where the upper bound on this dimension is n.

Physical clock synchronization: NTP

 In distributed systems, there is no global clock or common memory. Each processor has its

own internal clock and its own notion of time. In practice, these clocks can easily drift apart by

several seconds per day, accumulating significant errors over time. Also, because different clocks

tick at different rates, they may not remain always synchronized although they might be

synchronized when they start.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

Some practical examples that stress the need for synchronization are listed below:

• In database systems, the order in which processes perform updates on a database is

important to ensure a consistent, correct view of the database. To ensure the right

ordering of events, a common notion of time between co-operating processes becomes

imperative.

• It is quite common that distributed applications and network protocols use timeouts,

and their performance depends on how well physically dispersed processors are time-

synchronized. Design of such applications is simplified when clocks are synchronized.

Clock synchronization is the process of ensuring that physically distributed processors have

a common notion of time. It has a significant effect on many problems like secure systems, fault

diagnosis and recovery, scheduled operations, database systems, and real-world clock values.

Due to different clocks rates, the clocks at various sites may diverge with time, and

periodically a clock synchronization must be performed to correct this clock skew in distributed

systems. Clocks are synchronized to an accurate real-time standard like UTC (Universal

Coordinated Time). Clocks that must not only be synchronized with each other but also have to

adhere to physical time are termed physical clocks.

Definitions and terminology

We provide the following definitions. Ca and Cb are any two clocks.

• Time: The time of a clock in a machine p is given by the function Cp(t), where

Cp(t) = t for a perfect clock.

• Frequency: Frequency is the rate at which a clock progresses. The frequency at time t

of clock Ca is)(' tCa

• Offset: Clock offset is the difference between the time reported by a clock and the real

time. The offset of the clock Ca is given by Ca(t)−t. The offset of clock Ca relative to

Cb at time t ≥ 0 is given by Ca(t)− Cb(t).

• Skew: The skew of a clock is the difference in the frequencies of the clock and the

perfect clock. The skew of a clock Ca relative to clock Cb at time t is)(' tCa −)(' tCb .

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

• Drift (rate): The drift of clock Ca is the second derivative of the clock value with

respect to time, namely,)('' tCa . The drift of clock Ca relative to clock Cb at time t is

)('' tCa -)('' tCb

Clock inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC (Universal

Coordinated Time).

However, due to the clock inaccuracy discussed above, a timer (clock) is said to be working

within its specification if

where constant 𝜌 is the maximum skew rate specified by the manufacturer.

Offset delay estimation method

 The Network Time Protocol (NTP), which is widely used for clock synchronization on the

Internet, uses the the offset delay estimation method. The design of NTP involves a hierarchical

tree of time servers. The primary server at the root synchronizes with the UTC. The next level

contains secondary servers, which act as a backup to the primary server. At the lowest level is the

synchronization subnet which has the clients.

Clock offset and delay estimation

Figure: The behavior of fast, slow, and perfect clocks with respect to UTC

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

In practice, a source node cannot accurately estimate the local time on the target node due

to varying message or network delays between the nodes. This protocol employs a very common

practice of performing several trials and chooses the trial with the minimum delay. Recall that

Cristian’s remote clock reading method also relied on the same strategy to estimate message delay.

Figure: Offset and delay estimation

Figure shows how NTP timestamps are numbered and exchanged between peers A and B.

Let T1, T2, T3, T4 be the values of the four most recent timestamps as shown. Assume that clocks

A and B are stable and running at the same speed. Let a = T1 − T3 and b = T2 − T4. If the network

delay difference from A to B and from B to A, called differential delay, is small, the clock offset

𝜃 and roundtrip delay 𝛿 of B relative to A at time T4 are approximately given by the following:

Figure: Timing diagram for the two servers

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3551 DISTRIBUTED COMPUTING

 Each NTP message includes the latest three timestamps T1, T2, and T3, while T4 is

determined upon arrival. Thus, both peers A and B can independently calculate delay and offset

using a single bidirectional message stream as shown in Figure.

